Patents by Inventor Albert Lee Hutchinson

Albert Lee Hutchinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6795467
    Abstract: The measurement of intersubband electroluminescence (ISB-EL) in unipolar quantum cascade lasers is achieved by forming a longitudinal cleave through the active region and waveguide of the QC laser device, exposing a complete side face of the device, including the active region. The conventional laser facets at the entrance and exit of the active region are coated with a highly reflective material and the emission from the exposed side face is measured. In theory, the sideface emission would comprise only the ISB-EL spontaneous emission, but some additional laser emission (due to scattering in the imperfect waveguide structure) also exits along this sideface. Spatial filtering and/or polarization monitoring can be used to differentiate the laser emission from the ISB-EL spontaneous emission.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: September 21, 2004
    Assignee: Lucent Technologies Inc.
    Inventors: Federico Capasso, Alfred Yi Cho, Raffaele Colombelli, Claire F. Gmachl, Albert Lee Hutchinson, Arthur Mike Sergent, Deborah Lee Sivco, Alessandro Tredicucci
  • Patent number: 6690699
    Abstract: An optical gain medium has first and second active layers and an injector layer interposed between the first and second active layers. The active layers have upper minibands and lower minibands. The injector layer has a miniband that transports charge carriers from the lower miniband of the first active layer to an excited state in the upper miniband of the second active layer in response to application of a voltage across the optical gain medium.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: February 10, 2004
    Inventors: Federico Capasso, Alfred Yi Cho, Albert Lee Hutchinson, Gaetano Scamarcio, Deborah Lee Sivco, Mariano Troccoli
  • Patent number: 6563852
    Abstract: A self-mode-locking (SML) mid-infrared (5 and 8 &mgr;m) quantum cascade laser is formed that comprises both a relatively thin dielectric insulating layer (i.e., less than one-half micron in thickness) overlaid with an optically highly lossy (i.e., absorbing) layer, with a relatively long (approximately 3.5 mm) optical waveguide. Evidence of mode-locking is obtained from the measured optical spectra and corresponding interferograms, as well as from the rf spectra of the photocurrent detected with a fast quantum-well infrared photodetector. An estimate for the pulse width of approximately 3 psec is inferred from these data.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: May 13, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: James Nelson Baillargeon, Federico Capasso, Alfred Yi Cho, Claire F. Gmachl, Albert Lee Hutchinson, Roberto Paiella, Deborah Lee Sivco
  • Patent number: 6556604
    Abstract: The RT regions of an ISB light emitter comprise pre-biased SLs and a multiplicity of split quantum wells (SPQWs). A SPQW is a quantum well that is divided into a multiplicity of sub-wells by a first barrier layer sufficiently thin that the upper and lower energy states are split beyond their natural broadening and contribute to different minibands in each RT region. In contrast, adjacent SPQWs are coupled to one another by second barrier layers. The thicknesses of the latter layers are chosen so that minibands are created across each RT region. In one embodiment, the emitter includes an I/R region between adjacent RT regions, and in another embodiment the I/R regions are omitted.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: April 29, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: Federico Capasso, Alfred Yi Cho, Sung-Nee George Chu, Claire F. Gmachl, Albert Lee Hutchinson, Arthur Mike Sergent, Deborah Lee Sivco, Alessandro Tredicucci, Michael Clement Wanke
  • Patent number: 6501783
    Abstract: A surface plasmon laser structure is formed to include a DFB structure as the metal carrying layer, thus forming a single mode surface plasmon laser. The DFB structure comprises a multiple layer metallic surface guiding structure (for example, titanium stripes covered with a layer of gold. forming alternating Ti/Au—Au stripes). The active region, in one embodiment, may comprise a quantum cascade structure.
    Type: Grant
    Filed: February 24, 2000
    Date of Patent: December 31, 2002
    Assignee: Lucent Technologies Inc.
    Inventors: Federico Capasso, Alfred Yi Cho, Claire F. Gmachl, Albert Lee Hutchinson, Deborah Lee Sivco, Alessandro Tredicucci
  • Publication number: 20020146049
    Abstract: The measurement of intersubband electroluminescence (ISB-EL) in unipolar quantum cascade lasers is achieved by forming a longitudinal cleave through the active region and waveguide of the QC laser device, exposing a complete side face of the device, including the active region. The conventional laser facets at the entrance and exit of the active region are coated with a highly reflective material and the emission from the exposed side face is measured. In theory, the sideface emission would comprise only the ISB-EL spontaneous emission, but some additional laser emission (due to scattering in the imperfect waveguide structure) also exits along this sideface. Spatial filtering and/or polarization monitoring can be used to differentiate the laser emission from the ISB-EL spontaneous emission.
    Type: Application
    Filed: April 4, 2001
    Publication date: October 10, 2002
    Inventors: Federico Capasso, Alfred Yi Cho, Raffaele Colombelli, Claire F. Gmachl, Albert Lee Hutchinson, Arthur Mike Sergent, Deborah Lee Sivco, Alessandro Tredicucci
  • Patent number: 6463088
    Abstract: In a mesa geometry semiconductor laser, a patterned dielectric coating used to define the stripe geometry contact on the top the mesa and to provide significant waveguiding comprises a chalcogenide glass. Applications to intersubband (e.g., quantum cascade) lasers are specifically described.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: October 8, 2002
    Assignee: Lucent Technologies Inc.
    Inventors: James Nelson Baillargeon, Federico Capasso, Alfred Yi Cho, Claire Gmachl, Albert Lee Hutchinson, Harold Yoonsung Hwang, Roberto Paiella, Arthur Mike Sergent, Deborah Lee Sivco, Alessandro Tredicucci
  • Publication number: 20020136252
    Abstract: An optical gain medium has first and second active layers and an injector layer interposed between the first and second active layers. The active layers have upper minibands and lower minibands. The injector layer has a miniband that transports charge carriers from the lower miniband of the first active layer to an excited state in the upper miniband of the second active layer in response to application of a voltage across the optical gain medium.
    Type: Application
    Filed: February 21, 2002
    Publication date: September 26, 2002
    Inventors: Federico Capasso, Alfred Yi Cho, Albert Lee Hutchinson, Gaetano Scamarcio, Deborah Lee Sivco, Mariano Troccoli
  • Publication number: 20020097471
    Abstract: A process for optically transmitting data to a remote receiver includes receiving a stream of input data signals and modulating a mid-IR laser by direct modulation with a waveform whose sequential values are responsive of the data signals of the stream. The direct modulation includes pumping the mid-IR laser to produce high and low optical power levels in response to different ones of the values. The process also includes transmitting output light from the modulated mid-IR laser to the remote receiver via a free space communications channel.
    Type: Application
    Filed: June 29, 2001
    Publication date: July 25, 2002
    Inventors: Clyde George Bethea, Federico Capasso, Alfred Yi Cho, Claire F. Gmachi, Albert Lee Hutchinson, Rainer Martini, Roberto Paiella, Deborah Lee Sivco, Alessandro Tredicucci, Edward Anthony Whittaker
  • Patent number: 6326646
    Abstract: A mounting technology that increases the cw operating temperature of intersubband lasers, without increasing the risk of hot spots near the facets and short circuits near the perimeter of the laser chip, is described.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: December 4, 2001
    Assignee: Lucent Technologies, Inc.
    Inventors: James Nelson Baillargeon, Federico Capasso, Alfred Yi Cho, George Sung-Nee Chu, Claire Gmachl, Albert Lee Hutchinson, Arthur Mike Sergent, Deborah Lee Sivco, Alessandro Tredicucci
  • Patent number: 6324199
    Abstract: An intersubband semiconductor light source comprises a core region that includes a unipolar, radiative transition (RT) region having upper and lower energy levels, an injector-only (I) region disposed on one side of the RT region, and a reflector/extractor-only (R/E) region disposed on the other side of the RT region. The I region has a first miniband of energy levels aligned so as to inject electrons into the upper energy level, and the R/E region has a second miniband of energy levels aligned so as to extract electrons from the lower energy level. The R/E region also has a minigap aligned so as to inhibit the extraction of electrons from the upper level. A suitable voltage applied across the core region is effective to cause the RT region to generate light at a wavelength determined by the energy difference between the upper and lower energy levels. Low voltage operation at less than 3 V is described.
    Type: Grant
    Filed: November 18, 1998
    Date of Patent: November 27, 2001
    Assignee: Lucent Technologies Inc.
    Inventors: Federico Capasso, Alfred Yi Cho, Sung-Nee George Chu, Claire F. Gmachl, Albert Lee Hutchinson, Deborah Lee Sivco, Alessandro Tredicucci
  • Patent number: 6301282
    Abstract: A long wavelength (e.g., mid-IR to far-IR) semiconductor laser comprises an active region and at least one cladding region characterized in that the cladding region includes a light guiding interface between two materials which have dielectric constants opposite in sign. Consequently, the guided modes are transverse magnetic polarized surface waves (i.e., surface plasmons) which propagate along the interface without the need for a traditional dielectric cladding. In a preferred embodiment, the interface is formed between a semiconductor layer and a metal layer. The complex refractive index of the metal layer preferably has an imaginary component which is much larger than its real component. In an illustrative embodiment, our laser includes a QC active region sandwiched between a pair of cladding regions one of which is a guiding interface based on surface plasmons and the other of which is a dielectric (e.g., semiconductor) structure.
    Type: Grant
    Filed: July 29, 1998
    Date of Patent: October 9, 2001
    Assignee: Lucent Technologies Inc.
    Inventors: Federico Capasso, Alfred Yi Cho, Claire F. Gmachl, Albert Lee Hutchinson, Deborah Lee Sivco, Jerome Faist, Carlo Sirtori
  • Patent number: 6278134
    Abstract: A bi-directional semiconductor light source is formed that provides emission in response to either a positive or negative bias voltage. In a preferred embodiment with an asymmetric injector region in a cascade structure, the device will emit at a first wavelength (&lgr;−) under a negative bias and a second wavelength (&lgr;+) under a positive bias. In other embodiments, the utilization of an asymmetric injector region can be used to provide a light source with two different power levels, or operating voltages, as a function of the bias polarity.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: August 21, 2001
    Assignee: Lucent Technologies, Inc.
    Inventors: Federico Capasso, Alfred Yi Cho, Claire F. Gmachl, Albert Lee Hutchinson, Deborah Lee Sivco, Alessandro Tredicucci
  • Patent number: 6148012
    Abstract: A multiple wavelength quantum cascade (QC) superlattice (SL) light source has at least three energy levels in each radiative transition (RT) region, and electron transitions between the levels give rise to emission lines at different wavelengths. In one embodiment, a lower miniband has at least a first energy level and an upper miniband has at least third and fourth energy levels. In another embodiment, the lower miniband has first and second energy levels. In both cases, electron transitions between a first pair of the upper and lower levels generates light at a first spontaneous emission line having a center wavelength .lambda..sub.1 and a line broadening first energy, and electron transitions between a second pair of the upper and lower levels generates light at a second spontaneous emission line having a center wavelength .lambda..sub.2 and a line broadening second energy.
    Type: Grant
    Filed: October 21, 1998
    Date of Patent: November 14, 2000
    Assignee: Lucent Technologies Inc.
    Inventors: Federico Capasso, Alfred Yi Cho, Claire F. Gmachl, Albert Lee Hutchinson, Deborah Lee Sivco, Alessandro Tredicucci
  • Patent number: 6144681
    Abstract: The quantum cascade (QC) photon source according to this invention can emit simultaneously at two distinct wavelengths, typically both in the mid-infrared. This is accomplished through provision of a semiconductor layer structure in which, at the proper bias voltage, electrons are injected into an energy level E.sub.3 and then forced to cascade through an intermediate level E.sub.2 before reaching the ground state E.sub.1 of the active region. In the process, photons of energy E.sub.3 -E.sub.2 (wavelength .lambda..sub.1) and E.sub.2 -E.sub.1 (wavelength .lambda..sub.2) are emitted. Dual wavelength photon sources according to this invention can be used in a variety of ways, e.g., to determine the absorption of a gaseous sample at wavelengths .lambda..sub.1 and .lambda..sub.2, exemplarily to determine the concentration of a particular chemical compound in the sample.
    Type: Grant
    Filed: March 2, 1998
    Date of Patent: November 7, 2000
    Assignee: Lucent Technologies Inc.
    Inventors: Federico Capasso, Alfred Yi Cho, Jerome Faist, Albert Lee Hutchinson, Carlo Sirtori, Deborah Lee Sivco, Alessandro Tredicucci
  • Patent number: 6137817
    Abstract: A novel quantum cascade (QC) laser comprises a multiplicity of identical repeat units, with each repeat unit comprising an active region and an injector region. The injector region comprises quantum wells and barriers, selected to facilitate, under appropriate bias, resonant carrier transport from a lower energy level of a given active region to an upper energy level of an adjacent downstream active region. Carrier transition from the upper energy level to a lower energy level of an active region results in emission of infrared radiation. The laser is advantageously used in, e.g., a measurement system for detection of trace compounds in air.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: October 24, 2000
    Assignee: Lucent Technologies Inc.
    Inventors: James Nelson Baillargeon, Federico Capasso, Alfred Yi Cho, Claire F. Gmachl, Albert Lee Hutchinson, Deborah Lee Sivco, Alessandro Tredicucci
  • Patent number: 6091753
    Abstract: A novel superlattice quantum cascade (SLQC) laser has undoped SL active regions, with the dopant concentration in the injector region being selected, such that, under an appropriate electrical bias, the SL active region is substantially electric field free. The absence of dopant atoms in the SL active region results in reduced carrier scattering and reduced optical losses, with consequent low threshold current and/or room temperature operation. The novel laser emits in the mid-IR spectral region and can be advantageously used in measurement or monitoring systems, e.g., in pollution monitoring systems.
    Type: Grant
    Filed: May 1, 1998
    Date of Patent: July 18, 2000
    Assignee: Lucent Technologies Inc.
    Inventors: Federico Capasso, Alfred Yi Cho, Jerome Faist, Claire F. Gmachl, Albert Lee Hutchinson, Deborah Lee Sivco, Alessandro Tredicucci
  • Patent number: 6055254
    Abstract: Instead of trying to keep the SLs of a QC laser field free, we "pre-bias" the actual electronic potential by varying the SL period (and hence average composition) so as to achieve an essentially flat profile, on average, of upper and lower minibands, despite the presence of an applied field in the SLs. In one embodiment, in at least a first subset of the QW layers, the thicknesses of the QW layers are varied from QW layer to QW layer so as to increase in the direction of the applied field. In this embodiment, the upper and lower lasing levels are located, in the absence of an applied electric field, each at different energies from layer to layer within the first subset, so that despite the presence of an applied field, the desired flatband condition of the upper and lower minibands is realized.
    Type: Grant
    Filed: September 23, 1998
    Date of Patent: April 25, 2000
    Assignee: Lucent Technologies Inc.
    Inventors: Federico Capasso, Alfred Yi Cho, Claire F. Gmachl, Albert Lee Hutchinson, Deborah Lee Sivco, Alessandro Tredicucci
  • Patent number: 6023482
    Abstract: A quantum cascade (QC) laser has a multilayer core region comprising alternating layers of a first and a second semiconductor material, with lattice constants a.sub.1 and a.sub.2, respectively. The first material is selected such that a.sub.1 >a.sub.0, where a, is the lattice constant of the substrate (typically InP), and the second material is selected such that a.sub.2 >a.sub.0. The materials are also selected such that the conduction band discontinuity .DELTA.E.sub.c between the first and second materials is greater than 520 meV in absolute value. The multilayer core comprises a multiplicity of essentially identical multilayer repeat units. The layer thicknesses and materials of the repeat units are selected to substantially provide strain compensation over a repeat unit. QC lasers according to this invention preferably comprise a distributed feedback feature, (e.g.
    Type: Grant
    Filed: January 23, 1998
    Date of Patent: February 8, 2000
    Assignee: Lucent Technologies Inc.
    Inventors: Federico Capasso, Alfred Yi Cho, Sung-Nee George Chu, Jerome Faist, Albert Lee Hutchinson, Deborah Lee Sivco
  • Patent number: 5978397
    Abstract: In a novel tunable semiconductor laser, the lasing transition is a non-resonant tunneling transition, with the frequency of the emitted photon depending on the electrical bias across the multi-period active region of the laser. The laser can be designed to emit in the mid-IR, and can advantageously be used for, e.g., trace gas sensing.
    Type: Grant
    Filed: March 27, 1997
    Date of Patent: November 2, 1999
    Assignee: Lucent Technologies Inc.
    Inventors: Federico Capasso, Alfred Yi Cho, Jerome Faist, Albert Lee Hutchinson, Carlo Sirtori, Deborah Lee Sivco