Patents by Inventor Alessandro Bianciotto

Alessandro Bianciotto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11296796
    Abstract: Disclosed herein is a dual parallel Mach-Zehnder-modulator (DPMZM) device comprising a DPMZM 10 having first and second inner MZMs arranged parallel to each other. The first inner MZM generates an in-phase component EI of an optical signal in response to a first driving voltage VI, and the second inner MZM generates a quadrature component EQ of said optical signal in response to a second driving voltage VQ. Further disclosed is a calculation unit 52 configured for receiving an in-phase component yI and a quadrature component yQ of a desired base-band signal, and for calculating pre-distorted first and second driving voltages VI, VQ. The calculation of the pre-distorted first and second driving voltages VI, VQ is based on a model of said DPMZM 10 accounting for I-Q cross-talk, and using an algorithm that determines said first and second driving voltages VI, VQ each as a function of both of said in-phase and quadrature components yI, yQ of said base-band signal.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: April 5, 2022
    Assignee: XIEON NETWORKS S.a.r.l.
    Inventors: Alessandro Bianciotto, Stefano Calabró, Maxim Kuschnerov, Mahdi Mezghanni, Antonio Napoli, Bernhard Spinnler
  • Publication number: 20190199442
    Abstract: Disclosed herein is a dual parallel Mach-Zehnder-modulator (DPMZM) device comprising a DPMZM 10 having first and second inner MZMs arranged parallel to each other. The first inner MZM generates an in-phase component EI of an optical signal in response to a first driving voltage VI, and the second inner MZM generates a quadrature component EQ of said optical signal in response to a second driving voltage VQ. Further disclosed is a calculation unit 52 configured for receiving an in-phase component yI and a quadrature component yQ of a desired base-band signal, and for calculating pre-distorted first and second driving voltages VI, VQ. The calculation of the pre-distorted first and second driving voltages VI, VQ is based on a model of said DPMZM 10 accounting for I-Q cross-talk, and using an algorithm that determines said first and second driving voltages VI, VQ each as a function of both of said in-phase and quadrature components yI, yQ of said base-band signal.
    Type: Application
    Filed: February 26, 2019
    Publication date: June 27, 2019
    Inventors: Alessandro BIANCIOTTO, Stefano CALABRÓ, Maxim KUSCHNEROV, Mahdi MEZGHANNI, Antonio NAPOLI, Bernhard SPINNLER
  • Patent number: 10263708
    Abstract: Disclosed herein is a dual parallel Mach-Zehnder-modulator (DPMZM) device comprising a DPMZM 10 having first and second inner MZMs arranged parallel to each other. The first inner MZM generates an in-phase component EI of an optical signal in response to a first driving voltage VI, and the second inner MZM generates a quadrature component EQ of said optical signal in response to a second driving voltage VQ. Further disclosed is a calculation unit 52 configured for receiving an in-phase component yI and a quadrature component yQ_ of a desired base-band signal, and for calculating pre-distorted first and second driving voltages VI, VQ. The calculation of the pre-distorted first and second driving voltages VI, VQ is based on a model of said DPMZM 10 accounting for I-Q cross-talk, and using an algorithm that determines said first and second driving voltages VI, VQ each as a function of both of said in-phase and quadrature components yI, yQ of said base-band signal.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: April 16, 2019
    Assignee: Xieon Networks S.à.r.l.
    Inventors: Alessandro Bianciotto, Stefano Calabro, Maxim Kuschnerov, Mahdi Mezghanni, Antonio Napoli, Bernhard Spinnler
  • Patent number: 9871615
    Abstract: Component signal values are derived from component signals and fed to at least one fixed equalizer which generates equalizer output signals. The signals are fed to phase error detectors generating phase error signals. The phase error signals are combined with further phase error signals derived by further error detectors receiving signal values from further equalizers and/or the component signal values directly from sample units.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: January 16, 2018
    Assignee: Xieon Networks S.a.r.l.
    Inventors: Alessandro Bianciotto, Bernhard Spinnler, Antonio Napoli, Christina Hebebrand
  • Publication number: 20170054511
    Abstract: Disclosed herein is a dual parallel Mach-Zehnder-modulator (DPMZM) device comprising a DPMZM 10 having first and second inner MZMs arranged parallel to each other. The first inner MZM generates an in-phase component EI of an optical signal in response to a first driving voltage VI, and the second inner MZM generates a quadrature component EQ of said optical signal in response to a second driving voltage VQ. Further disclosed is a calculation unit 52 configured for receiving an in-phase component yI and a quadrature component yQ_ of a desired base-band signal, and for calculating pre-distorted first and second driving voltages VI, VQ. The calculation of the pre-distorted first and second driving voltages VI, VQ is based on a model of said DPMZM 10 accounting for I-Q cross-talk, and using an algorithm that determines said first and second driving voltages VI, VQ each as a function of both of said in-phase and quadrature components yI, yQ of said base-band signal.
    Type: Application
    Filed: March 12, 2015
    Publication date: February 23, 2017
    Inventors: Alessandro BIANCIOTTO, Stefano CALABRO, Maxim KUSCHNEROV, Mahdi MEZGHANNI, Antonio NAPOLI, Bernhard SPINNLER
  • Publication number: 20170019206
    Abstract: Component signal values are derived from component signals and fed to at least one fixed equalizer which generates equalizer output signals. The signals are fed to phase error detectors generating phase error signals. The phase error signals are combined with further phase error signals derived by further error detectors receiving signal values from further equalizers and/or the component signal values directly from sample units.
    Type: Application
    Filed: September 28, 2016
    Publication date: January 19, 2017
    Inventors: Alessandro BIANCIOTTO, Bernhard SPINNLER, Antonio NAPOLI, Christina HEBEBRAND
  • Patent number: 9490930
    Abstract: A method for an optical communication system and an optical communication system comprising a pump source configured to generate a pump signal having rotating polarization, a polarization sensitive receiver for receiving the optical signal having a polarization tracking cut-off frequency, wherein the polarization of the pump signal is configured to rotate at a predetermined frequency of polarization rotation and the frequency of polarization rotation of the pump signal is higher than the polarization tracking cut-off frequency of the receiver. Suitable for mitigation of cross-polarization modulation (XPolM) related effects in coherent polarization multiplexed quadrature phase shift keying (CP-QPSK) systems.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: November 8, 2016
    Assignees: XIEON NETWORKS S.A.R.L., FRAUNHOFER GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Alessandro Bianciotto, Juraj Slovak, Dirk Van Den Borne, Dirk-Daniel Gross
  • Patent number: 9467246
    Abstract: Component signal values are derived from component signals and fed to at least one fixed equalizer which generates equalizer output signals. The signals are fed to phase error detectors generating phase error signals. The phase error signals are combined with further phase error signals derived by further error detectors receiving signal values from further equalizers and/or the component signal values directly from sample units.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: October 11, 2016
    Assignee: Xieon Networks S.a.r.l.
    Inventors: Alessandro Bianciotto, Bernhard Spinnler, Antonio Napoli, Christina Hebebrand
  • Publication number: 20150280857
    Abstract: Component signal values are derived from component signals and fed to at least one fixed equalizer which generates equalizer output signals. The signals are fed to phase error detectors generating phase error signals. The phase error signals are combined with further phase error signals derived by further error detectors receiving signal values from further equalizers and/or the component signal values directly from sample units.
    Type: Application
    Filed: June 10, 2015
    Publication date: October 1, 2015
    Inventors: Alessandro BIANCIOTTO, Bernhard SPINNLER, Antonio NAPOLI, Christina HEBEBRAND
  • Patent number: 9065590
    Abstract: Component signal values are derived from component signals and fed to at least one fixed equalizer which generates equalizer output signals. The signals are fed to phase error detectors generating phase error signals. The phase error signals are combined with further phase error signals derived by further error detectors receiving signal values from further equalizers and/or the component signal values directly from sample units.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: June 23, 2015
    Assignee: Xieon Networks S.a.r.l.
    Inventors: Alessandro Bianciotto, Bernhard Spinnler, Antonio Napoli, Christina Hebebrand
  • Publication number: 20130343766
    Abstract: A method for an optical communication system and an optical communication system comprising a pump source configured to generate a pump signal having rotating polarization, a polarization sensitive receiver for receiving the optical signal having a polarization tracking cut-off frequency, wherein the polarization of the pump signal is configured to rotate at a predetermined frequency of polarization rotation and the frequency of polarization rotation of the pump signal is higher than the polarization tracking cut-off frequency of the receiver. Suitable for mitigation of cross -polarization modulation (XPolM) related effects in coherent polarization multiplexed quadrature phase shift keying (CP-QPSK) systems.
    Type: Application
    Filed: November 28, 2011
    Publication date: December 26, 2013
    Applicant: NOKIA SIEMENS NETWORKS OY
    Inventors: Alessandro Bianciotto, Juraj Slovak, Dirk Van Den Borne, Dirk-Daniel Gross
  • Publication number: 20120308234
    Abstract: Component signal values are derived from component signals and fed to at least one fixed equalizer which generates equalizer output signals. The signals are fed to phase error detectors generating phase error signals. The phase error signals are combined with further phase error signals derived by further error detectors receiving signal values from further equalizers and/or the component signal values directly from sample units.
    Type: Application
    Filed: February 2, 2011
    Publication date: December 6, 2012
    Applicant: NOKIA SIEMENS NETWORKS GMBH & CO. KG
    Inventors: Alessandro Bianciotto, Bernhard Spinnler, Antonio Napoli, Christina Hebebrand