Patents by Inventor Alex R. Guichard

Alex R. Guichard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10741741
    Abstract: A thermoelectric device with multiple headers and a method of manufacturing such a device are provided herein. In some embodiments, a thermoelectric device includes multiple thermoelectric legs, a cold header thermally attached to the thermoelectric legs, and a hot header thermally attached to the thermoelectric legs opposite the cold header. At least one of the cold header and the hot header includes at least one score line. According to some embodiments disclosed herein, this the thermal stress on the thermoelectric device can be greatly reduced or relieved by splitting the header into multiple pieces or by scoring the header by a depth X. This enables the use of larger thermoelectric devices and/or thermoelectric devices with an increased lifespan.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: August 11, 2020
    Assignee: Phononic, Inc.
    Inventors: Jesse W. Edwards, Devon Newman, Arthur Prejs, Alex R. Guichard, Jason D. Reed, Kevin Shawne Schneider, Brian Williams, Robert J. Therrien
  • Patent number: 10396228
    Abstract: A solar concentrator module (80) employs a luminescent concentrator material (82) between photovoltaic cells (86) having their charge-carrier separation junctions (90) parallel to front surfaces (88) of photovoltaic material 84 of the photovoltaic cells (86). Intercell areas (78) covered by the luminescent concentrator material (82) occupy from 2 to 50% of the total surface area of the solar concentrator modules (80). The luminescent concentrator material (82) preferably employs quantum dot heterostructures, and the photovoltaic cells (86) preferably employ low-cost high-efficiency photovoltaic materials (84), such as silicon-based photovoltaic materials.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: August 27, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Alex C. Mayer, Shawn R. Scully, Juanita N. Kurtin, Alex R. Guichard, Steven M. Hughes, Oun-Ho Park, Paul-Emile B. Trudeau, Colin C. Reese, Manav Sheoran, Georgeta Masson
  • Publication number: 20190089126
    Abstract: Embodiments of a Transistor Outline (TO) can package having an integrated Thermoelectric Cooler (TEC) and methods of manufacturing a TO can package having an integrated TEC are disclosed. In some embodiments, a TO can package comprises a TO header and a TEC on a surface of the TO header. The TEC comprises an insulation layer on a surface of the TO header, where the insulation layer has a thickness that is less than 100 micrometers and comprises one or more thermally and electrically conductive materials. The TEC further comprises a plurality of thermoelectric devices on a surface of the insulation layer opposite the TO header. The thin insulation layer, as opposed to a relatively thick bottom header of a stand-alone TEC, enables taller N-type and P-type legs for the thermoelectric devices, and thus a higher Coefficient of Performance (COP), within a given height for the TEC.
    Type: Application
    Filed: September 20, 2017
    Publication date: March 21, 2019
    Inventors: Alex R. Guichard, Michael J. Bruno, Jeffrey Alan Morrow, Abhishek Yadav
  • Publication number: 20170365767
    Abstract: A thermoelectric device with multiple headers and a method of manufacturing such a device are provided herein. In some embodiments, a thermoelectric device includes multiple thermoelectric legs, a cold header thermally attached to the thermoelectric legs, and a hot header thermally attached to the thermoelectric legs opposite the cold header. At least one of the cold header and the hot header includes at least one score line. According to some embodiments disclosed herein, this the thermal stress on the thermoelectric device can be greatly reduced or relieved by splitting the header into multiple pieces or by scoring the header by a depth X. This enables the use of larger thermoelectric devices and/or thermoelectric devices with an increased lifespan.
    Type: Application
    Filed: June 20, 2017
    Publication date: December 21, 2017
    Inventors: Jesse W. Edwards, Devon Newman, Arthur Prejs, Alex R. Guichard, Jason D. Reed, Kevin Shawne Schneider, Brian Williams, Robert J. Therrien
  • Publication number: 20170084768
    Abstract: A solar concentrator module (80) employs a luminescent concentrator material (82) between photovoltaic cells (86) having their charge-carrier separation junctions (90) parallel to front surfaces (88) of photovoltaic material 84 of the photovoltaic cells (86). Intercell areas (78) covered by the luminescent concentrator material (82) occupy from 2 to 50% of the total surface area of the solar concentrator modules (80). The luminescent concentrator material (82) preferably employs quantum dot heterostructures, and the photovoltaic cells (86) preferably employ low-cost high-efficiency photovoltaic materials (84), such as silicon-based photovoltaic materials.
    Type: Application
    Filed: December 5, 2016
    Publication date: March 23, 2017
    Inventors: Alex C. Mayer, Shawn R. Scully, Juanita N. Kurtin, Alex R. Guichard, Steven M. Hughes, Oun Ho Park, Paul-Emile B. Trudeau, Colin C. Reese, Manav Sheoran, Georgeta Masson
  • Patent number: 9525092
    Abstract: A solar concentrator module (80) employs a luminescent concentrator material (82) between photovoltaic cells (86) having their charge-carrier separation junctions (90) parallel to front surfaces (88) of photovoltaic material 84 of the photovoltaic cells (86). Intercell areas (78) covered by the luminescent concentrator material (82) occupy from 2 to 50% of the total surface area of the solar concentrator modules (80). The luminescent concentrator material (82) preferably employs quantum dot heterostructures, and the photovoltaic cells (86) preferably employ low-cost high-efficiency photovoltaic materials (84), such as silicon-based photovoltaic materials.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: December 20, 2016
    Assignee: Pacific Light Technologies Corp.
    Inventors: Alex C. Mayer, Shawn R. Scully, Juanita N. Kurtin, Alex R. Guichard, Steven M. Hughes, Oun Ho Park, Paul-Emile B. Trudeau, Colin C. Reese, Manav Sheoran, Georgeta Masson
  • Publication number: 20160161155
    Abstract: According to one aspect, a hybrid heat transfer system includes a first thermally conductive path configured to passively transfer heat between a load having a load temperature (TL) and an ambient environment having an ambient temperature (TA), and a second thermally conductive path configured to actively transfer heat between the load and the ambient environment, the second path comprising a heat pump.
    Type: Application
    Filed: December 4, 2015
    Publication date: June 9, 2016
    Inventors: Alex R. Guichard, Abhishek Yadav, Jesse W. Edwards, James Christopher Caylor, Ted Donnelly, Michael J. Bruno, Allen L. Gray, Devon Newman
  • Publication number: 20130206219
    Abstract: Photovoltaic cells (22) of different materials may be integrated at the network (20) or panel level to optimize independent and cooperative efficiencies and manufacturing techniques of the different materials. The sizes and numbers of the photovoltaic cells (22) in the separate photovoltaic networks (20) may differ. Separate fabrication of the different photovoltaic networks (20) permits optimization of an interlayer material (110), which can be insulating or noninsulating and can include one or more of light-scattering or light-emitting particles, photonic crystals, metallic materials, an optical grating, or a refractive index grading. For example, adaptations of increased emitter layer thickness, lower sheet resistance, increased gridline spacing, smoother photovoltaic material surface, and/or increased AR coating thickness are made to a multicrystalline silicon photovoltaic cell (20) for optimization as a bottom network (20b) of a tandem solar module.
    Type: Application
    Filed: July 27, 2011
    Publication date: August 15, 2013
    Inventors: Juanita N. Kurtin, Alex R. Guichard, Alex C. Mayer, Shawn R. Scully, Steven M. Hughes, Oun-Ho Park, Paul-Emile B. Trudeau, Colin C. Reese, Manav Sheoran, Georgeta Masson
  • Publication number: 20120305860
    Abstract: The light conversion efficiency of a solar cell (10) is enhanced by using an optical downshifting layer (30) in cooperation with a photovoltaic material (22). The optical downshifting layer converts photons (50) having wavelengths in a supplemental light absorption spectrum into photons (52) having a wavelength in the primary light absorption spectrum of the photovoltaic material. The cost effectiveness and efficiency of solar cells platforms (20) can be increased by relaxing the range of the primary light absorption spectrum of the photovoltaic material. The optical downshifting layer can be applied as a low cost solution processed film composed of highly absorbing and emissive quantum dot heterostructure nanomaterial embedded in an inert matrix to improve the short wavelength response of the photovoltaic material. The enhanced efficiency provided by the optical downshifting layer permits advantageous modifications to the solar cell platform that enhances its efficiency as well.
    Type: Application
    Filed: June 28, 2012
    Publication date: December 6, 2012
    Inventors: Juanita N. Kurtin, Alex R. Guichard, Steven M. Hughes, Alex C. Mayer, Oun Ho Park, Shawn R. Scully, Paul-Emile B. Trudeau, Colin C. Reese, Manav Sheoran, Georgeta Masson
  • Publication number: 20120222723
    Abstract: A solar concentrator module (80) employs a luminescent concentrator material (82) between photovoltaic cells (86) having their charge-carrier separation junctions (90) parallel to front surfaces (88) of photovoltaic material 84 of the photovoltaic cells (86). Intercell areas (78) covered by the luminescent concentrator material (82) occupy from 2 to 50% of the total surface area of the solar concentrator modules (80). The luminescent concentrator material (82) preferably employs quantum dot heterostructures, and the photovoltaic cells (86) preferably employ low-cost high-efficiency photovoltaic materials (84), such as silicon-based photovoltaic materials.
    Type: Application
    Filed: November 2, 2011
    Publication date: September 6, 2012
    Applicant: Spectrawatt, Inc.
    Inventors: Alex C. Mayer, Shawn R. Scully, Juanita N. Kurtin, Alex R. Guichard, Steven M. Hughes, Oun Ho Park, Paul-Emile B. Trudeau, Colin C. Reese, Manav Sheoran, Georgeta Masson
  • Publication number: 20110220194
    Abstract: The light conversion efficiency of a solar cell (10) is enhanced by using an optical downshifting layer (30) in cooperation with a photovoltaic material (22). The optical downshifting layer converts photons (50) having wavelengths in a supplemental light absorption spectrum into photons (52) having a wavelength in the primary light absorption spectrum of the photovoltaic material. The cost effectiveness and efficiency of solar cells platforms (20) can be increased by relaxing the range of the primary light absorption spectrum of the photovoltaic material. The optical downshifting layer can be applied as a low cost solution processed film composed of highly absorbing and emissive quantum dot heterostructure nanomaterial embedded in an inert matrix to improve the short wavelength response of the photovoltaic material. The enhanced efficiency provided by the optical downshifting layer permits advantageous modifications to the solar cell platform that enhances its efficiency as well.
    Type: Application
    Filed: July 14, 2010
    Publication date: September 15, 2011
    Applicant: Spectrawatt, Inc.
    Inventors: Juanita N. Kurtin, Alex R. Guichard, Steven M. Hughes, Alex C. Mayer, Oun Ho Park, Shawn R. Scully, Paul-Emile B. Trudeau, Colin C. Reese, Manav Sheoran, Georgeta Masson