Patents by Inventor Alex Vlachos

Alex Vlachos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11151776
    Abstract: Described herein are techniques for adjusting a prediction level and a throttle level, as frames are being rendered on a head-mounted display (HMD), based on an application's rendering performance. The prediction level is increased if a number of late frames, out of a past N rendered frames of (N being any suitable number), meets or exceeds a threshold number of late frames, which causes a compositor of the HMD to predict pose data of the HMD farther out into the future. The throttle level can be increased independently from, or in synchronization with, the increase in the prediction level to causes the compositor to throttle the frame rate of the application (e.g., to a fraction of the refresh rate of the HMD). The prediction level (and the throttle level, if at the same level) can be decreased if a particular number of consecutively-rendered frames finish rendering early.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: October 19, 2021
    Assignee: Valve Corporation
    Inventors: Aaron Leiby, Alex Vlachos
  • Patent number: 11107178
    Abstract: Systems and methods for implementing radial density masking graphics rendering for use in applications such as head mounted displays (“HMDs”) are described. Exemplary algorithms are disclosed, according to which image resolution varies within an image depending on the distance of a particular point on the image from one or more fixation points. Reconstruction algorithms according to certain embodiments include three stages: (1) hole filling; (2) cross-cell blending; and (3) Gaussian blur.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: August 31, 2021
    Assignee: Valve Corporation
    Inventors: Alex Vlachos, Kenneth Barnett
  • Patent number: 10948730
    Abstract: A panel mask(s) rendered on a display panel(s) of a head-mounted display (HMD) may be dynamically adjusted (increased and decreased) in size in order to hide unwanted visual artifacts from view, as needed. For example, if frames are being rendered on the display panel of the HMD using re-projection, a size value associated with at least a portion of the panel mask can be adjusted based on rotation of the HMD to increase or decrease a size of at least the portion of the panel mask from a current size to an adjusted size, and the panel mask can be rendered with at least the portion of the panel mask rendered at the adjusted size to hide the unwanted visual artifacts. The size of the portion of the panel mask can subsequently decrease, over a period of time, if re-projection ceases and/or if head rotation ceases or slows down.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: March 16, 2021
    Assignee: Valve Corporation
    Inventor: Alex Vlachos
  • Patent number: 10733783
    Abstract: Described herein are motion smoothing techniques for a display system to account for motion of moving or animating objects in a way that mitigates judder. For example, first pixel data and second pixel data associated with two previously-rendered frames may be provided to a graphics processing unit (GPU) as input. The video encoder of the GPU can process the input pixel data to generate an array of motion vectors which is used to modify third pixel data of a re-projected frame. The modified third pixel data for the re-projected frame is “motion-smoothed” for rendering on a display, such as a head-mounted display (HMD), in a manner that mitigates judder of moving or animating objects.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: August 4, 2020
    Assignee: Valve Corporation
    Inventors: Alex Vlachos, Aaron Leiby
  • Publication number: 20200160591
    Abstract: Described herein are techniques for adjusting a prediction level and a throttle level, as frames are being rendered on a head-mounted display (HMD), based on an application's rendering performance. The prediction level is increased if a number of late frames, out of a past N rendered frames of (N being any suitable number), meets or exceeds a threshold number of late frames, which causes a compositor of the HMD to predict pose data of the HMD farther out into the future. The throttle level can be increased independently from, or in synchronization with, the increase in the prediction level to causes the compositor to throttle the frame rate of the application (e.g., to a fraction of the refresh rate of the HMD). The prediction level (and the throttle level, if at the same level) can be decreased if a particular number of consecutively-rendered frames finish rendering early.
    Type: Application
    Filed: January 21, 2020
    Publication date: May 21, 2020
    Inventors: Aaron Leiby, Alex Vlachos
  • Publication number: 20200117015
    Abstract: A panel mask(s) rendered on a display panel(s) of a head-mounted display (HMD) may be dynamically adjusted (increased and decreased) in size in order to hide unwanted visual artifacts from view, as needed. For example, if frames are being rendered on the display panel of the HMD using re-projection, a size value associated with at least a portion of the panel mask can be adjusted based on rotation of the HMD to increase or decrease a size of at least the portion of the panel mask from a current size to an adjusted size, and the panel mask can be rendered with at least the portion of the panel mask rendered at the adjusted size to hide the unwanted visual artifacts. The size of the portion of the panel mask can subsequently decrease, over a period of time, if re-projection ceases and/or if head rotation ceases or slows down.
    Type: Application
    Filed: December 12, 2019
    Publication date: April 16, 2020
    Inventor: Alex Vlachos
  • Publication number: 20200111195
    Abstract: Described herein are motion smoothing techniques for a display system to account for motion of moving or animating objects in a way that mitigates judder. For example, first pixel data and second pixel data associated with two previously-rendered frames may be provided to a graphics processing unit (GPU) as input. The video encoder of the GPU can process the input pixel data to generate an array of motion vectors which is used to modify third pixel data of a re-projected frame. The modified third pixel data for the re-projected frame is “motion-smoothed” for rendering on a display, such as a head-mounted display (HMD), in a manner that mitigates judder of moving or animating objects.
    Type: Application
    Filed: October 9, 2018
    Publication date: April 9, 2020
    Inventors: Alex Vlachos, Aaron Leiby
  • Patent number: 10600236
    Abstract: Described herein are techniques for adjusting a prediction level and a throttle level, as frames are being rendered on a head-mounted display (HMD), based on an application's rendering performance. The prediction level is increased if a number of late frames, out of a past N rendered frames of (N being any suitable number), meets or exceeds a threshold number of late frames, which causes a compositor of the HMD to predict pose data of the HMD farther out into the future. The throttle level can be increased independently from, or in synchronization with, the increase in the prediction level to causes the compositor to throttle the frame rate of the application (e.g., to a fraction of the refresh rate of the HMD). The prediction level (and the throttle level, if at the same level) can be decreased if a particular number of consecutively-rendered frames finish rendering early.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: March 24, 2020
    Assignee: Valve Corporation
    Inventors: Aaron Leiby, Alex Vlachos
  • Publication number: 20200043223
    Abstract: Described herein are techniques for adjusting a prediction level and a throttle level, as frames are being rendered on a head-mounted display (HMD), based on an application's rendering performance. The prediction level is increased if a number of late frames, out of a past N rendered frames of (N being any suitable number), meets or exceeds a threshold number of late frames, which causes a compositor of the HMD to predict pose data of the HMD farther out into the future. The throttle level can be increased independently from, or in synchronization with, the increase in the prediction level to causes the compositor to throttle the frame rate of the application (e.g., to a fraction of the refresh rate of the HMD). The prediction level (and the throttle level, if at the same level) can be decreased if a particular number of consecutively-rendered frames finish rendering early.
    Type: Application
    Filed: August 6, 2018
    Publication date: February 6, 2020
    Inventors: Aaron Leiby, Alex Vlachos
  • Publication number: 20200018978
    Abstract: A panel mask(s) rendered on a display panel(s) of a head-mounted display (HMD) may be dynamically adjusted (increased and decreased) in size in order to hide unwanted visual artifacts from view, as needed. For example, if frames are being rendered on the display panel of the HMD using re-projection, a size value associated with at least a portion of the panel mask can be adjusted based on rotation of the HMD to increase or decrease a size of at least the portion of the panel mask from a current size to an adjusted size, and the panel mask can be rendered with at least the portion of the panel mask rendered at the adjusted size to hide the unwanted visual artifacts. The size of the portion of the panel mask can subsequently decrease, over a period of time, if re-projection ceases and/or if head rotation ceases or slows down.
    Type: Application
    Filed: July 11, 2018
    Publication date: January 16, 2020
    Inventor: Alex Vlachos
  • Patent number: 10520739
    Abstract: A panel mask(s) rendered on a display panel(s) of a head-mounted display (HMD) may be dynamically adjusted (increased and decreased) in size in order to hide unwanted visual artifacts from view, as needed. For example, if frames are being rendered on the display panel of the HMD using re-projection, a size value associated with at least a portion of the panel mask can be adjusted based on rotation of the HMD to increase or decrease a size of at least the portion of the panel mask from a current size to an adjusted size, and the panel mask can be rendered with at least the portion of the panel mask rendered at the adjusted size to hide the unwanted visual artifacts. The size of the portion of the panel mask can subsequently decrease, over a period of time, if re-projection ceases and/or if head rotation ceases or slows down.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: December 31, 2019
    Assignee: Valve Corporation
    Inventor: Alex Vlachos
  • Publication number: 20190304051
    Abstract: Systems and methods for implementing radial density masking graphics rendering for use in applications such as head mounted displays (“HMDs”) are described. Exemplary algorithms are disclosed, according to which image resolution varies within an image depending on the distance of a particular point on the image from one or more fixation points. Reconstruction algorithms according to certain embodiments include three stages: (1) hole filling; (2) cross-cell blending; and (3) Gaussian blur.
    Type: Application
    Filed: April 22, 2019
    Publication date: October 3, 2019
    Inventors: Alex Vlachos, Kenneth Barnett
  • Patent number: 10311540
    Abstract: Systems and methods for implementing radial density masking graphics rendering for use in applications such as head mounted displays (“HMDs”) are described. Exemplary algorithms are disclosed, according to which image resolution varies within an image depending on the distance of a particular point on the image from one or more fixation points. Reconstruction algorithms according to certain embodiments include three stages: (1) hole filling; (2) cross-cell blending; and (3) Gaussian blur.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: June 4, 2019
    Assignee: Valve Corporation
    Inventors: Alex Vlachos, Kenneth Barnett
  • Patent number: 10297077
    Abstract: Systems and methods for implementing hidden mesh (or stencil mesh) graphics rendering techniques for use in applications such as head mounted displays (“HMDs”) are described. Exemplary systems and algorithms are disclosed for masking or eliminating pixels in an image from the list of pixels to be rendered, based on the observation that a significant number of pixels in the periphery of HMD images cannot be seen, due to the specific details of the optical and display/electronics performance of each particular implementation.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: May 21, 2019
    Assignee: Valve Corporation
    Inventor: Alex Vlachos
  • Publication number: 20170221184
    Abstract: Systems and methods for implementing radial density masking graphics rendering for use in applications such as head mounted displays (“HMDs”) are described. Exemplary algorithms are disclosed, according to which image resolution varies within an image depending on the distance of a particular point on the image from one or more fixation points. Reconstruction algorithms according to certain embodiments include three stages: (1) hole filling; (2) cross-cell blending; and (3) Gaussian blur.
    Type: Application
    Filed: January 31, 2017
    Publication date: August 3, 2017
    Applicant: VALVE CORPORATION
    Inventors: Alex Vlachos, Kenneth Barnett