Patents by Inventor Alexander A. Liu

Alexander A. Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240178151
    Abstract: Embodiments disclosed herein include a package architecture. In an embodiment, the package architecture comprises a first substrate with a first fiducial mark on a surface of the first substrate. In an embodiment, the package architecture further comprises a second substrate over the first substrate, where the second substrate comprises glass and a second fiducial mark on the second substrate, and where a footprint of the second fiducial mark at least partially overlaps a footprint of the first fiducial mark.
    Type: Application
    Filed: November 30, 2022
    Publication date: May 30, 2024
    Inventors: Minglu LIU, Alexander AGUINAGA, Gang DUAN, Jung Kyu HAN, Yosuke KANAOKA, Yi LI, Robin MCREE, Hong Seung YEON
  • Publication number: 20240173972
    Abstract: A printing system and method of inspecting drop ejection in a printing system is disclosed. The method includes capturing an image of each of a plurality of drops of a print material after ejection from an ejector of a printing system, creating a temporally averaged image from each image of the plurality of drops of print material, and classifying one of the plurality of drops of print material based on the temporally averaged image that was created. The use of a pretrained convolutional neural network for classifying one of the plurality of drops and comparing the temporally averaged image to another temporally averaged image to classify one of the plurality of drops may be employed. The printing system also includes a camera with a high-speed shutter where the shutter is synchronized to an ejector pulse, and a video analytic framework coupled to the ejector and the camera configured to generate a jetting result for each of the one or more drops of liquid print material.
    Type: Application
    Filed: November 29, 2022
    Publication date: May 30, 2024
    Applicant: XEROX CORPORATION
    Inventors: Peter KNAUSDORF, Sakib ZARGAR, Joseph C. SHEFLIN, Palghat S. RAMESH, Collin Alexander LADD, Chu-Heng LIU, Paul J. McCONVILLE
  • Publication number: 20240165409
    Abstract: The present disclosure generally relates to auditory nerve stimulation to create the perception of sound in the brain of a subject such as an animal or human being. In one form, a system includes an implantable electrode array including a plurality of spaced apart micro-needles. The system also includes a first electrical lead electrically coupled to and extending from the implantable electrode array, and an auditory signal device configured to produce one or more electrical signals representative of communications received from an external processor. An interposer is configured to electrically couple the implantable electrode array and the auditory signal device in an arrangement where one or more electrical signals produced by the auditory signal device may be transmitted through the first electrical lead to the implantable electrode array. Various novel stimulation strategies can be employed, such as place modulated stimulation signals.
    Type: Application
    Filed: September 18, 2023
    Publication date: May 23, 2024
    Inventors: Moritz Michael Leber, Robert Kyle Franklin, IV, Sandeep Negi, Joseph David Crew, Janet Liu, Vinh Quang Ngo, Hubert Hyoungil Lim, Geoffrey Mohon Ghose, Luke Aaron Johnson, Inderbir Singh Sondh, Abigail Paige Heiller, Meredith Evelyn Adams, Andrew John Oxenham, Thomas Heinrich Robert Lenarz, Karl-Heinz Hiro Dyballa, Waldo Nogueira Vazquez, Amir Samii, Keno H. B. Hübner, Paul Pontiller, Marco Eder, Daniel M. Sieber, Alexander Mayr, Guntram Wyzisk, Elisabeth A. Hansen, Dominik Hammerer, Florian Solzbacher, Loren Wellington Rieth
  • Publication number: 20240161867
    Abstract: One or more techniques for optimizing cancer classification based on covariate characteristics is disclosed. In a first approach, an analytics system may determine separate cutoff thresholds for positively detecting disease signal for different labels for a covariate characteristic. The system may subdivide training samples based on their labels for the covariate characteristic, to separately determine the cutoff thresholds. In other approaches, the system may train disparate classifiers for each population. The system separates the training samples based on their labels for the covariate characteristic, and separately trains classifiers to generate a signal vector representing an amount of disease signal detected in a sample. The classifiers may be trained on different feature sets as determined based on mutual information gain, genomic region coverage, and healthy activation fraction.
    Type: Application
    Filed: November 16, 2023
    Publication date: May 16, 2024
    Inventors: Alexander P. Fields, John F. Beausang, Oliver Claude Venn, Arash Jamshidi, M. Cyrus Maher, Qinwen Liu, Jan Schellenberger, Joshua Newman, Robert Abe Paine Calef, Samuel S. Gross, Frank Chu, Earl Hubbell
  • Publication number: 20240160109
    Abstract: Degradation of the reflectivity of one or more reflective optical elements in a system for generating EUV radiation is reduced by the controlled introduction of a gas into a vacuum chamber containing the optical element. The gas may be added to the flow of another gas such as hydrogen or alternated with the introduction of hydrogen radicals.
    Type: Application
    Filed: November 14, 2023
    Publication date: May 16, 2024
    Inventors: Yue Ma, Antonius Theodorus Wilhelmus Kempen, Klaus Martin Hummler, Johannes Hubertus Josephina Moors, Jeroen Hubert Rommers, Hubertus Johannes Van De Wiel, Andrew David Laforge, Fernando Brizuela, Rob Carlo Wieggers, Umesh Prasad Gomes, Elena Nedanovska, Celal Korkmaz, Alexander Downn Kim, Rui Miguel Duarte Rodrigues Nunes, Hendrikus Alphonsus Ludovicus Van Dijck, William Peter Van Drent, Peter Gerardus Jonkers, Qiushi Zhu, Parham Yaghoobi, Jan Steven Christiaan Westerlaken, Martinus Hendrikus Antonius Leenders, Alexander Igorevich Ershov, Igor Vladimirovich Fomenkov, Fei Liu, Johannes Henricus Wilhelmus Jacobs, Alexey Sergeevich Kuznetsov
  • Publication number: 20240163006
    Abstract: A wireless device may transmit ranging transmissions using a compressed PSDU. The compressed PSDU may be configured to support poll packets, response packets, and report packets. The compressed PSDU may comprise an identifier (ID) field, an address field, ID specific data, and a cyclic redundancy check (CRC) field. Further, the wireless device may use an optimized header IE for broadcast.
    Type: Application
    Filed: September 15, 2023
    Publication date: May 16, 2024
    Inventors: Alexander Krebs, Su Khiong Yong, Moche Cohen, Santhoshkumar Mani, Lochan Verma, Yong Liu, Jinjing Jiang
  • Patent number: 11982637
    Abstract: A gas sensor includes a biomaterial comprising electrically-conductive protein nanowires and at least two electrodes. The at least two electrodes are in operative arrangement with the protein nanowires and configured to provide a signal indicative of a change in conductivity of the protein nanowires. The conductivity of the protein nanowires is responsive to a change in concentration of a gas exposed to the biomaterial, such as ammonia, or to a change in relative humidity.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: May 14, 2024
    Assignee: University of Massachusetts
    Inventors: Jun Yao, Derek R. Lovley, Alexander Smith, Xiaomeng Liu
  • Publication number: 20240152169
    Abstract: Solar power systems and methods utilize DC power transmission and centralized power inversion. The solar power systems include a photovoltaic (PV) bus system and a fixed bus system. The PV system utilizes a control mode handoff control method, which includes determining that a local maximum power point tracking (MPPT) control is enabled; in response to determining that the local MPPT control is enabled, starting an MPPT mode timer; performing local MPPT; determining that the MPPT mode timer is greater than a predetermined period; and, in response to determining that the MPPT mode timer is greater than a predetermined period, handing off MPPT control to the next MPPT controller. The distributed MPPT control method may include sequential MPPT control, adaptive ?V MPPT control, and/or power limiting control. The fixed bus system includes PV string-level MPPT controllers and a fixed DC input central inverter or multiple fixed DC modular inverters.
    Type: Application
    Filed: January 10, 2024
    Publication date: May 9, 2024
    Inventors: Yang LIU, Alexander W. AU, Fei GU
  • Publication number: 20240154322
    Abstract: An example radiation field beam steering arrangement includes a substrate having a reflector surface, a conductive element extending at least partially adjacent a periphery of the substrate, and at least one end-fire antenna element superimposed with the substrate and comprising an antenna radiator. The reflector surface comprises a plurality of reflectors, each reflector having a hollow profile and is configured to reflect at least a part of a radiation field generated by the antenna radiator that is towards a main beam direction oriented parallel to a main plane of the substrate.
    Type: Application
    Filed: March 26, 2021
    Publication date: May 9, 2024
    Inventors: Janne ILVONEN, Alexander KHRIPKOV, Dong LIU, Timofey KAMYSHEV, Ruiyuan TIAN, Zlatoljub MILOSAVLJEVIC
  • Publication number: 20240132604
    Abstract: Provided herein are anti-CCR8 antibodies or antigen binding fragment thereof, which bind to CCR8, wherein the CCR8 is a human CCR8 and the antibody does not bind human CCR4. The anti-CCR8 antibodies or antigen binding fragment of the disclosure are useful for the treatment of cancer diseases through the elimination of regulatory T cells. Also provided herein are methods of use for the anti-CCR8 antibodies or antigen binding fragment thereof.
    Type: Application
    Filed: October 18, 2023
    Publication date: April 25, 2024
    Inventors: Dillon Phan, Tom Sih-Yuan Hsu, Tam Thi Thanh Phuong, Matthew P. Greving, Alexander Tomoaki Taguchi, Cory Schwartz, Jiang Chen, Gao Liu, Martin Brenner, Matthew William Dent, Cody Allen Moore
  • Patent number: 11967103
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for estimating a 3-D pose of an object of interest from image and point cloud data. In one aspect, a method includes obtaining an image of an environment; obtaining a point cloud of a three-dimensional region of the environment; generating a fused representation of the image and the point cloud; and processing the fused representation using a pose estimation neural network and in accordance with current values of a plurality of pose estimation network parameters to generate a pose estimation network output that specifies, for each of multiple keypoints, a respective estimated position in the three-dimensional region of the environment.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: April 23, 2024
    Assignee: Waymo LLC
    Inventors: Jingxiao Zheng, Xinwei Shi, Alexander Gorban, Junhua Mao, Andre Liang Cornman, Yang Song, Ting Liu, Ruizhongtai Qi, Yin Zhou, Congcong Li, Dragomir Anguelov
  • Patent number: 11967921
    Abstract: A solar tracker apparatus includes an adjustable hanger assembly that has a clam shell hanger assembly. The clam shell hanger assembly may hold a torque tube comprising a plurality of torque tubes configured together in a continuous length from a first end to a second end. A center of mass of the solar tracker apparatus may be aligned with a center of rotation of the torque tubes, in order to reduce a load of a drive device operably coupled to the torque tube. Solar modules may be coupled to the torque tubes. The solar tracker includes an energy system that includes solar panel, a DC to DC converter, a battery, and a micro-controller. The energy system may facilitate full operation movement of the tracker apparatus without any external power lines.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: April 23, 2024
    Assignee: NEXTRACKER LLC
    Inventors: Yang Liu, Alexander W. Au
  • Publication number: 20240128477
    Abstract: This disclosure relates to electrolyzer composite membranes, and in particular, to a composite membrane having at least two reinforcing layers comprising a microporous polymer structure and a surprisingly high resistance to piercing. The electrolyzer composite membranes have a recombination catalyst configured to be disposed closer to an anode than to a cathode in a membrane-electrode assembly (MEA). The disclosure also relates to membrane-electrode assemblies and electrolyzers comprising the membranes, and to method of manufacture of the membranes.
    Type: Application
    Filed: December 14, 2023
    Publication date: April 18, 2024
    Inventors: Joshua M. Bartels, Wen Liu, Alexander L. Agapov
  • Patent number: 11961589
    Abstract: A processing system uses a Bayesian inference based model for targeted sequencing or variant calling. In an embodiment, the processing system generates candidate variants of a cell free nucleic acid sample. The processing system determines likelihoods of true alternate frequencies for each of the candidate variants in the cell free nucleic acid sample and in a corresponding genomic nucleic acid sample. The processing system filters or scores the candidate variants by the model using at least the likelihoods of true alternate frequencies. The processing system outputs the filtered candidate variants, which may be used to generate features for a predictive cancer or disease model.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: April 16, 2024
    Assignee: GRAIL, LLC
    Inventors: Alexander W. Blocker, Earl Hubbell, Oliver Claude Venn, Qinwen Liu
  • Patent number: 11958738
    Abstract: An optical system including a dual-layer microelectromechanical systems (MEMS) device, and methods of fabricating and operating the same are disclosed. Generally, the MEMS device includes a substrate having an upper surface; a top modulating layer including a number of light modulating micro-ribbons, each micro-ribbon supported above and separated from the upper surface of the substrate by spring structures in at least one lower actuating layer; and a mechanism for moving one or more of the micro-ribbons relative to the upper surface and/or each other. The spring structures are operable to enable the light modulating micro-ribbons to move continuously and vertically relative to the upper surface of the substrate while maintaining the micro-ribbons substantially parallel to one another and the upper surface of the substrate. The micro-ribbons can be reflective, transmissive, partially reflective/transmissive, and the device is operable to modulate a phase and/or amplitude of light incident thereon.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: April 16, 2024
    Assignee: SILICON LIGHT MACHINES CORPORATION
    Inventors: Olav Solgaard, Stephen Hamann, Alexander Payne, Lars Eng, James Hunter, Tianbo Liu
  • Patent number: 11961592
    Abstract: A computer-implemented system for identifying a patient for a trial may include at least one processor. The at least one processor may be programmed to receive an indication of a selected trial, the selected trial being associated with a testing status criterion; access a plurality of patient records associated with a patient of a plurality of patients; determine, using a machine learning model and based on unstructured information from one at least one of the patient records, a likelihood of an occurrence of genomic testing for the patient; determine a genomic testing status of the patient based on the determined likelihood of the occurrence of genomic testing; determine that the genomic testing status satisfies the testing status criterion; and include the patient in a subset of the plurality of patients based on the genomic testing status satisfying the testing status criterion.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: April 16, 2024
    Assignee: Flatiron Health, Inc.
    Inventors: Addison Shelley, Alexander Padmos, Angel Leung, Chun-Che Wang, Dominic Green, Edward Liu, Janet Donegan, Lauren Sutton, Lucy He, Sharang Phadke
  • Publication number: 20240117056
    Abstract: Provided herein are anti-EGFRvII antibodies and binding fragments thereof. The anti-EGFRvIII antibodies of the disclosure are useful for the treatment of cancers through, e.g., antibody-dependent cell cytotoxicity (ADCC). Also provided herein are methods of making and using the anti-EGFRvIII antibodies for the treatment of cancer, and polynucleotides that encode the same.
    Type: Application
    Filed: October 11, 2023
    Publication date: April 11, 2024
    Inventors: Dillon Phan, Tom Sih-Yuan Hsu, Matthew P. Greving, Martin Brenner, Tam Thi Thanh Phuong, Alexander Tomoaki Taguchi, Cory Schwartz, Gao Liu, Jiang Chen
  • Patent number: 11953901
    Abstract: An autonomous vehicle includes one or more sensors for detecting an object in an environment surrounding the autonomous vehicle and a vehicle computing system comprising one or more processors receiving canonical route data associated with at least one canonical route, and controlling travel of the autonomous vehicle based on sensor data from the one or more sensors and the canonical route data associated with the at least one canonical route. The at least one canonical route comprises at least one roadway connected with another roadway in a plurality of roadways in a geographic location that satisfies at least one route optimization function derived based on trip data associated with one or more traversals of the plurality of roadways in a geographic location by one or more autonomous vehicles.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: April 9, 2024
    Assignee: UATC, LLC
    Inventors: Andrew Raymond Sturges, Alexander Edward Chao, Yifang Liu, Xiaodong Zhang, Richard Brian Donnelly, Bryan John Nagy, Jeff Schneider, Collin Christopher Otis
  • Patent number: D1025561
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: May 7, 2024
    Assignee: CROCS, INC.
    Inventors: Jie Liu, Alexander Jacob Mayhew
  • Patent number: D1027396
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: May 21, 2024
    Assignee: Crocs, Inc.
    Inventors: Alexander Jacob Mayhew, Jie Liu