Patents by Inventor Alexander Buxbaum

Alexander Buxbaum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9881766
    Abstract: A method for using differential imaging for applications involving TEM samples by allowing operators to take multiple images during a procedure involving a focused ion beam procedure and overlaying the multiple images to create a differential image that clearly shows the differences between milling steps. The methods also involve generating real-time images of the area being milled and using the overlays of the differential images to show small changes in each image, and thus highlight the ion beam milling location. The methods also involve automating the process of creating differential images and using them to automatically mill subsequent slices.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: January 30, 2018
    Assignee: FEI Company
    Inventor: Alexander Buxbaum
  • Patent number: 9735066
    Abstract: A method and apparatus for use in surface delayering for fault isolation and defect localization of a sample work piece is provided. More particularly, a method and apparatus for mechanically peeling of one or more layers from the sample in a rapid, controlled, and accurate manner is provided. A programmable actuator includes a delayering probe tip with a cutting edge that is shaped to quickly and accurately peel away a layer of material from a sample. The cutting face of the delayering probe tip is configured so that each peeling step peels away an area of material having a linear dimension substantially equal to the linear dimension of the delayering probe tip cutting face. The surface delayering may take place inside a vacuum chamber so that the target area of the sample can be observed in-situ with FIB/SEM imaging.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: August 15, 2017
    Assignee: FEI Company
    Inventors: Alexander Buxbaum, Michael Schmidt
  • Publication number: 20160211113
    Abstract: A method for using differential imaging for applications involving TEM samples by allowing operators to take multiple images during a procedure involving a focused ion beam procedure and overlaying the multiple images to create a differential image that clearly shows the differences between milling steps. The methods also involve generating real-time images of the area being milled and using the overlays of the differential images to show small changes in each image, and thus highlight the ion beam milling location. The methods also involve automating the process of creating differential images and using them to automatically mill subsequent slices.
    Type: Application
    Filed: March 28, 2016
    Publication date: July 21, 2016
    Applicant: FEI Company
    Inventor: Alexander Buxbaum
  • Patent number: 9297727
    Abstract: A method for using differential imaging for applications involving TEM samples by allowing operators to take multiple images during a procedure involving a focused ion beam procedure and overlaying the multiple images to create a differential image that clearly shows the differences between milling steps. The methods also involve generating real-time images of the area being milled and using the overlays of the differential images to show small changes in each image, and thus highlight the ion beam milling location. The methods also involve automating the process of creating differential images and using them to automatically mill subsequent slices.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: March 29, 2016
    Assignee: FEI Company
    Inventor: Alexander Buxbaum
  • Publication number: 20150214124
    Abstract: A method and apparatus for use in surface delayering for fault isolation and defect localization of a sample work piece is provided. More particularly, a method and apparatus for mechanically peeling of one or more layers from the sample in a rapid, controlled, and accurate manner is provided. A programmable actuator includes a delayering probe tip with a cutting edge that is shaped to quickly and accurately peel away a layer of material from a sample. The cutting face of the delayering probe tip is configured so that each peeling step peels away an area of material having a linear dimension substantially equal to the linear dimension of the delayering probe tip cutting face. The surface delayering may take place inside a vacuum chamber so that the target area of the sample can be observed in-situ with FIB/SEM imaging.
    Type: Application
    Filed: January 30, 2014
    Publication date: July 30, 2015
    Applicant: FEI Company
    Inventors: Alexander Buxbaum, Michael Schmidt
  • Publication number: 20150136977
    Abstract: A method for using differential imaging for applications involving TEM samples by allowing operators to take multiple images during a procedure involving a focused ion beam procedure and overlaying the multiple images to create a differential image that clearly shows the differences between milling steps. The methods also involve generating real-time images of the area being milled and using the overlays of the differential images to show small changes in each image, and thus highlight the ion beam milling location. The methods also involve automating the process of creating differential images and using them to automatically mill subsequent slices.
    Type: Application
    Filed: October 29, 2014
    Publication date: May 21, 2015
    Applicant: FEI Company
    Inventor: Alexander Buxbaum
  • Patent number: 7737040
    Abstract: An anti-reflective hard mask layer left on a radiation-blocking layer during fabrication of a reticle provides functionality when the reticle is used in a semiconductor device manufacturing process.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: June 15, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Christopher Dennis Bencher, Melvin Warren Montgomery, Alexander Buxbaum, Yung-Hee Yvette Lee, Jian Ding, Gilad Almogy, Wendy H. Yeh
  • Patent number: 7468227
    Abstract: We are able to reduce the average process bias in a patterned reticle by treating the developed, patterned photoresist which is used to transfer a pattern to the reticle with a silicon-containing reagent prior to the pattern transfer. The process bias is a measure of the difference between a nominal feature critical dimension (CD) produced in a patterned reticle and the nominal isofocal CD for the feature. Improvement of the average process bias is directly related to an improved resolution in the mask features. The reduction in average process bias achievable using the method of the invention typically ranges from about 30% to about 70%. This reduction in average process bias enables the printing of smaller features.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: December 23, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Melvin Warren Montgomery, Alexander Buxbaum
  • Patent number: 7365014
    Abstract: We have reduced the critical dimension bias for reticle fabrication. Pattern transfer to the radiation-blocking layer of the reticle substrate essentially depends upon use of a hard mask to which the pattern is transferred from a photoresist. The photoresist pull back which occurs during pattern transfer to the hard mask is minimalized. In addition, a hard mask material having anti-reflective properties which are matched to the reflective characteristics of the radiation-blocking layer enables a reduction in critical dimension size and an improvement in the pattern feature integrity in the hard mask itself. An anti-reflective hard mask layer left on the radiation-blocking layer provides functionality when the reticle is used in a semiconductor device manufacturing process.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: April 29, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Christopher Dennis Bencher, Melvin Warren Montgomery, Alexander Buxbaum, Yung-Hee Yvette Lee, Jian Ding, Gilad Almogy, Wendy H. Yeh
  • Publication number: 20080096138
    Abstract: An anti-reflective hard mask layer left on a radiation-blocking layer during fabrication of a reticle provides functionality when the reticle is used in a semiconductor device manufacturing process.
    Type: Application
    Filed: November 9, 2007
    Publication date: April 24, 2008
    Inventors: Christopher Bencher, Melvin Montgomery, Alexander Buxbaum, Yung-Hee Lee, Jian Ding, Gilad Almogy, Wendy Yeh
  • Publication number: 20060105248
    Abstract: We are able to reduce the average process bias in a patterned reticle by treating the developed, patterned photoresist which is used to transfer a pattern to the reticle with a silicon-containing reagent prior to the pattern transfer. The process bias is a measure of the difference between a nominal feature critical dimension (CD) produced in a patterned reticle and the nominal isofocal CD for the feature. Improvement of the average process bias is directly related to an improved resolution in the mask features. The reduction in average process bias achievable using the method of the invention typically ranges from about 30% to about 70%. This reduction in average process bias enables the printing of smaller features.
    Type: Application
    Filed: November 16, 2004
    Publication date: May 18, 2006
    Inventors: Melvin Montgomery, Alexander Buxbaum
  • Publication number: 20050170655
    Abstract: We have reduced the critical dimension bias for reticle fabrication. Pattern transfer to the radiation-blocking layer of the reticle substrate essentially depends upon use of a hard mask to which the pattern is transferred from a photoresist. The photoresist pull back which occurs during pattern transfer to the hard mask is minimalized. In addition, a hard mask material having anti-reflective properties which are matched to the reflective characteristics of the radiation-blocking layer enables a reduction in critical dimension size and an improvement in the pattern feature integrity in the hard mask itself. An anti-reflective hard mask layer left on the radiation-blocking layer provides functionality when the reticle is used in a semiconductor device manufacturing process.
    Type: Application
    Filed: January 30, 2004
    Publication date: August 4, 2005
    Inventors: Christopher Bencher, Melvin Montgomery, Alexander Buxbaum, Yung-Hee Lee, Jian Ding, Gilad Almogy, Wendy Yeh