Patents by Inventor Alexander Gordon Barr

Alexander Gordon Barr has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8744575
    Abstract: One aspect provides a capacitor feedthrough assembly having an electrically conductive member dimensioned to extend at least partially through a feedthrough hole of a case of the capacitor, the conductive member having a passage therethrough.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: June 3, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Brian L. Schmidt, James M. Poplett, Robert R. Tong, Richard J. Kavanagh, Rajesh Iyer, Alexander Gordon Barr, Luke J. Christenson, Brian V. Waytashek, Brian D. Schenk, Gregory J. Sherwood
  • Patent number: 8543201
    Abstract: A method of joining a connection member to a capacitor foil using a staking tool having a tip of less than 0.030? (0.762 mm) in diameter. Another embodiment couples multiple connection members of a capacitor together by edge-connecting each connection member to its substantially flush neighboring connection members. In one aspect, a capacitor includes a multi-anode stack connected at a first weld by a weld joint less than 0.060? (1.524 mm) in diameter and a tab attached to one of the anodes of the multi-anode stack at a second weld. In one aspect, an exemplary method joining one or more foils using a staking tool having a tip of less than approximately 0.060? (1.524 mm) in diameter. In another aspect, a capacitor including a capacitor case having an electrolyte therein and a high formation voltage anode foil having a porous structure and located within the capacitor case.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: September 24, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, James M. Poplett, Robert R. Tong, Rajesh Iyer, Alexander Gordon Barr
  • Publication number: 20080154319
    Abstract: A method of joining a connection member to a capacitor foil using a staking tool having a tip of less than 0.030? (0.762 mm) in diameter. Another embodiment couples multiple connection members of a capacitor together by edge-connecting each connection member to its substantially flush neighboring connection members. In one aspect, a capacitor includes a multi-anode stack connected at a first weld by a weld joint less than 0.060? (1.524 mm) in diameter and a tab attached to one of the anodes of the multi-anode stack at a second weld. In one aspect, an exemplary method joining one or more foils using a staking tool having a tip of less than approximately 0.060? (1.524 mm) in diameter. In another aspect, a capacitor including a capacitor case having an electrolyte therein and a high formation voltage anode foil having a porous structure and located within the capacitor case.
    Type: Application
    Filed: February 28, 2008
    Publication date: June 26, 2008
    Inventors: Michael J. O'Phelan, James M. Poplett, Robert R. Tong, Rajesh Iyer, Alexander Gordon Barr
  • Patent number: 7347880
    Abstract: A method of joining a connection member to a capacitor foil using a staking tool having a tip of less than 0.030? (0.762 mm) in diameter. Another embodiment couples multiple connection members of a capacitor together by edge-connecting each connection member to its substantially flush neighboring connection members. In one aspect, a capacitor includes a multi-anode stack connected at a first weld by a weld joint less than 0.060? (1.524 mm) in diameter and a tab attached to one of the anodes of the multi-anode stack at a second weld. In one aspect, an exemplary method joining one or more foils using a staking tool having a tip of less than approximately 0.060? (1.524 mm) in diameter. In another aspect, a capacitor including a capacitor case having an electrolyte therein and a high formation voltage anode foil having a porous structure and located within the capacitor case.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: March 25, 2008
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, James M. Poplett, Robert R. Tong, Rajesh Iyer, Alexander Gordon Barr
  • Patent number: 7251123
    Abstract: Implantable defibrillators are implanted into the chests of patients prone to suffering ventricular fibrillation, a potentially fatal heart condition. A critical component in these devices is an aluminum electrolytic capacitors, which stores and delivers one or more life-saving bursts of electric charge to a fibrillating heart. These capacitors make up about one third the total size of the defibrillators. Unfortunately, conventional manufacturers of these capacitors have paid little or no attention to reducing the size of these capacitors through improved capacitor packaging. Accordingly, the inventors contravened several conventional manufacturing principles and practices to devise unique space-saving packaging that allows dramatic size reduction.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: July 31, 2007
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, James M. Poplett, Robert R. Tong, Alexander Gordon Barr
  • Patent number: 7157671
    Abstract: One aspect provides a capacitor having a first stack of capacitive elements a second stack of capacitive elements, wherein the first and second stacks are enclosed in separate compartments of a capacitor case that electrically isolate the electrolytes of each stack from one another.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: January 2, 2007
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Brian L. Schmidt, James M. Poplett, Robert R. Tong, Richard J. Kavanagh, Rajesh Iyer, Alexander Gordon Barr, Luke J. Christenson, Brian V. Waytashek, Brian D. Schenk, Gregory J. Sherwood
  • Patent number: 7089982
    Abstract: A method of manufacturing a capacitor stack for a flat capacitor includes sequentially stacking a plurality of capacitor layers on top of each other such that each one of the plurality of capacitor layers is, in turn, a top layer of the capacitor stack, and continually applying a compression force between a bottom layer of the capacitor stack and the top layer of the capacitor stack until all of the plurality of capacitor layers have been placed.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: August 15, 2006
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Alexander Gordon Barr, Paul K. Hamre
  • Patent number: 7072713
    Abstract: One aspect provides a capacitor feedthrough assembly having an electrically conductive member dimensioned to extend at least partially through a feedthrough hole of a case of the capacitor, the conductive member having a passage therethrough.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: July 4, 2006
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Brian L. Schmidt, James M. Poplett, Robert R. Tong, Richard J. Kavanagh, Rajesh Iyer, Alexander Gordon Barr, Luke J. Christenson, Brian V. Waytashek, Brian D. Schenk, Gregory J. Sherwood
  • Patent number: 6881232
    Abstract: A multi-anodic aluminum electrolytic capacitor includes an electrical connection to the multiple porous (e.g., tunnel-etched) anodes in an anode stack using a single anode tab that is attached only to a first anode. Other anodes are electrically coupled to the anode tab through the first anode. Anodes in the anode stack are in intimate physical and electrical contact with other such anodes as a result of layering effected by planar stacking or cylindrical winding. The need for separate tabs to different anode layers is eliminated or at least minimized, thereby reducing capacitor volume, increasing capacitor reliability, and reducing the cost and complexity of the capacitor manufacturing process for multi-anodic capacitors. The capacitor is capable of use in implantable defibrillators, camera photoflashes, and other electric circuit applications.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: April 19, 2005
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Robert R. Tong, James M. Poplett, Luke J. Christenson, Alexander Gordon Barr, Brian V. Waytashek
  • Patent number: 6839224
    Abstract: Implantable defibrillators are implanted into the chests of patients prone to suffering ventricular fibrillation, a potentially fatal heart condition. A critical component in these devices is an aluminum electrolytic capacitors, which stores and delivers one or more life-saving bursts of electric charge to a fibrillating heart. These capacitors make up about one third the total size of the defibrillators. Unfortunately, conventional manufacturers of these capacitors have paid little or no attention to reducing the size of these capacitors through improved capacitor packaging. Accordingly, the inventors contravened several conventional manufacturing principles and practices to devise unique space-saving packaging that allows dramatic size reduction.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: January 4, 2005
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, James M. Poplett, Robert R. Tong, Alexander Gordon Barr
  • Publication number: 20040147960
    Abstract: One aspect provides a capacitor having a first stack of capacitive elements a second stack of capacitive elements, wherein the first and second stacks are enclosed in separate compartments of a capacitor case that electrically isolate the electrolytes of each stack from one another.
    Type: Application
    Filed: January 15, 2004
    Publication date: July 29, 2004
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Brian L. Schmidt, James M. Poplett, Robert R. Tong, Richard J. Kavanagh, Rajesh Iyer, Alexander Gordon Barr, Luke J. Christenson, Brian V. Waytashek, Brian D. Schenk, Gregory J. Sherwood
  • Publication number: 20040147961
    Abstract: One aspect provides a capacitor feedthrough assembly having an electrically conductive member dimensioned to extend at least partially through a feedthrough hole of a case of the capacitor, the conductive member having a passage therethrough.
    Type: Application
    Filed: January 15, 2004
    Publication date: July 29, 2004
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Brian L. Schmidt, James M. Poplett, Robert R. Tong, Richard J. Kavanagh, Rajesh Iyer, Alexander Gordon Barr, Luke J. Christenson, Brian V. Waytashek, Brian D. Schenk, Gregory J. Sherwood
  • Publication number: 20040114311
    Abstract: A method of joining a connection member to a capacitor foil using a staking tool having a tip of less than 0.030″ (0.762 mm) in diameter. Another embodiment couples multiple connection members of a capacitor together by edge-connecting each connection member to its substantially flush neighboring connection members. In one aspect, a capacitor includes a multi-anode stack connected at a first weld by a weld joint less than 0.060″ (1.524 mm) in diameter and a tab attached to one of the anodes of the multi-anode stack at a second weld. In one aspect, an exemplary method joining one or more foils using a staking tool having a tip of less than approximately 0.060″ (1.524 mm) in diameter. In another aspect, a capacitor including a capacitor case having an electrolyte therein and a high formation voltage anode foil having a porous structure and located within the capacitor case.
    Type: Application
    Filed: December 5, 2003
    Publication date: June 17, 2004
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, James M. Poplett, Robert R. Tong, Rajesh Iyer, Alexander Gordon Barr
  • Publication number: 20040105212
    Abstract: A multi-anodic aluminum electrolytic capacitor includes an electrical connection to the multiple porous (e.g., tunnel-etched) anodes in an anode stack using a single anode tab that is attached only to a first anode. Other anodes are electrically coupled to the anode tab through the first anode. Anodes in the anode stack are in intimate physical and electrical contact with other such anodes as a result of layering effected by planar stacking or cylindrical winding. The need for separate tabs to different anode layers is eliminated or at least minimized, thereby reducing capacitor volume, increasing capacitor reliability, and reducing the cost and complexity of the capacitor manufacturing process for multi-anodic capacitors. The capacitor is capable of use in implantable defibrillators, camera photoflashes, and other electric circuit applications.
    Type: Application
    Filed: July 10, 2003
    Publication date: June 3, 2004
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Robert R. Tong, James M. Poplett, Luke J. Christenson, Alexander Gordon Barr, Brian V. Waytashek
  • Patent number: 6699265
    Abstract: One embodiment includes a capacitor having a first anode stack having a first number of anode foils, a second anode stack having a second number of anode foils, where the first number of anode foils is different than the second number of anode foils. Another aspect provides a capacitor having a case having a curved interior surface, and first, second, and third capacitor modules that confront the curved interior surface of the case. One aspect provides a capacitor having one or more anodes and a cathode structure comprising a plurality of integrally connected cathode plates, the cathode structure having a serpentine shape, interweaving under and over each of the one or more anodes. One aspect provides a feedthrough assembly having an electrically conductive member dimensioned to extend at least partially through a feedthrough hole of a case of the capacitor, the conductive member having a passage therethrough.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: March 2, 2004
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Brian L. Schmidt, James M. Poplett, Robert R. Tong, Richard J. Kavanagh, Rajesh Iyer, Alexander Gordon Barr, Luke J. Christenson, Brian V. Waytashek, Brian D. Schenk, Gregory J. Sherwood
  • Publication number: 20040029302
    Abstract: A method of manufacturing a capacitor stack for a flat capacitor includes sequentially stacking a plurality of capacitor layers on top of each other such that each one of the plurality of capacitor layers is, in turn, a top layer of the capacitor stack, and continually applying a compression force between a bottom layer of the capacitor stack and the top layer of the capacitor stack until all of the plurality of capacitor layers have been placed.
    Type: Application
    Filed: August 8, 2003
    Publication date: February 12, 2004
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Alexander Gordon Barr, Paul K. Hamre
  • Patent number: 6687118
    Abstract: A method of joining a connection member to a capacitor foil using a staking tool having a tip of less than 0.030″ (0.762 mm) in diameter. Another embodiment couples multiple connection members of a capacitor together by edge-connecting each connection member to its substantially flush neighboring connection members. In one aspect, a capacitor includes a multi-anode stack connected at a first weld by a weld joint less than 0.060″ (1.524 mm) in diameter and a tab attached to one of the anodes of the multi-anode stack at a second weld. In one aspect, an exemplary method joining one or more foils using a staking tool having a tip of less than approximately 0.060″ (1.524 mm) in diameter. In another aspect, a capacitor including a capacitor case having an electrolyte therein and a high formation voltage anode foil having a porous structure and located within the capacitor case.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: February 3, 2004
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, James M. Poplett, Robert R. Tong, Rajesh Iyer, Alexander Gordon Barr
  • Publication number: 20030223178
    Abstract: Implantable defibrillators are implanted into the chests of patients prone to suffering ventricular fibrillation, a potentially fatal heart condition. A critical component in these devices is an aluminum electrolytic capacitors, which stores and delivers one or more life-saving bursts of electric charge to a fibrillating heart. These capacitors make up about one third the total size of the defibrillators. Unfortunately, conventional manufacturers of these capacitors have paid little or no attention to reducing the size of these capacitors through improved capacitor packaging. Accordingly, the inventors contravened several conventional manufacturing principles and practices to devise unique space-saving packaging that allows dramatic size reduction.
    Type: Application
    Filed: February 25, 2003
    Publication date: December 4, 2003
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, James M. Poplett, Robert R. Tong, Alexander Gordon Barr
  • Patent number: 6632720
    Abstract: A method of manufacturing a capacitor stack for a flat capacitor includes sequentially stacking a plurality of capacitor layers on top of each other such that each one of the plurality of capacitor layers is, in turn, a top layer of the capacitor stack, and continually applying a compression force between a bottom layer of the capacitor stack and the top layer of the capacitor stack until all of the plurality of capacitor layers have been placed.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: October 14, 2003
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Alexander Gordon Barr, Paul K. Hamre
  • Patent number: 6597564
    Abstract: A multi-anodic aluminum electrolytic capacitor includes an electrical connection to the multiple porous (e.g., tunnel-etched) anodes in an anode stack using a single anode tab that is attached only to a first anode. Other anodes are electrically coupled to the anode tab through the first anode. Anodes in the anode stack are in intimate physical and electrical contact with other such anodes as a result of layering effected by planar stacking or cylindrical winding. The need for separate tabs to different anode layers is eliminated or at least minimized, thereby reducing capacitor volume, increasing capacitor reliability, and reducing the cost and complexity of the capacitor manufacturing process for multi-anodic capacitors. The capacitor is capable of use in implantable defibrillators, camera photoflashes, and other electric circuit applications.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: July 22, 2003
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Robert R. Tong, James M. Poplett, Luke J. Christenson, Alexander Gordon Barr, Brian V. Waytashek