Patents by Inventor Alexander Kalnitsky

Alexander Kalnitsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11189613
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a transistor and a diode. The transistor includes a first gate region electrically coupled to a gate driver, and a first source region and a first drain region on two sides of the first gate region. The diode includes two terminals coupled between the first drain region of the transistor and a reference voltage. The transistor has a threshold voltage greater than that of the diode.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: November 30, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Jia-Rui Lee, Kuo-Ming Wu, Yi-Chun Lin, Alexander Kalnitsky
  • Patent number: 11171015
    Abstract: In some embodiments, the present disclosure relates to a high-resistivity silicon-on-insulator (SOI) substrate, including a first polysilicon layer arranged over a semiconductor substrate. A second polysilicon layer is arranged over the first polysilicon layer, and a third polysilicon layer is arranged over the second polysilicon layer. An active semiconductor layer over an insulator layer may be arranged over the third polysilicon layer. The second polysilicon layer has an elevated concentration of oxygen compared to the first and third polysilicon layers.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: November 9, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Cheng, Cheng-Ta Wu, Chen-Hao Chiang, Alexander Kalnitsky, Yeur-Luen Tu, Eugene Chen
  • Publication number: 20210343881
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) including a substrate comprising sidewalls that define a trench. A capacitor comprising a plurality of conductive layers and a plurality of dielectric layers that define a trench segment is disposed within the trench. A width of the trench segment continuously increases from a front-side surface of the substrate in a direction towards a bottom surface of the trench.
    Type: Application
    Filed: July 8, 2021
    Publication date: November 4, 2021
    Inventors: Hsin-Li Cheng, Jyun-Ying Lin, Alexander Kalnitsky, Shih-Fen Huang, Shu-Hui Su, Ting-Chen Hsu, Tuo-Hsin Chien, Felix Ying-Kit Tsui, Shi-Min Wu, Yu-Chi Chang
  • Publication number: 20210343707
    Abstract: A three-dimensional (3D) integrated circuit (IC) is provided. In some embodiments, a second IC die is bonded to a first IC die. A seal-ring structure is arranged in a peripheral region of the 3D IC in the first IC die and the second IC die. The seal-ring structure extends from a first semiconductor substrate of the first IC die to a second semiconductor substrate of the second IC die. A plurality of through silicon via (TSV) coupling structures is arranged at the peripheral region of the 3D IC along an inner perimeter of the seal-ring structure closer to the 3D IC than the seal-ring structure. The plurality of TSV coupling structures respectively comprises a TSV disposed in the second semiconductor substrate and electrically coupling to the 3D IC through a stack of TSV wiring layers and inter-wire vias.
    Type: Application
    Filed: July 8, 2021
    Publication date: November 4, 2021
    Inventors: Kong-Beng Thei, Dun-Nian Yaung, Fu-Jier Fan, Hsing-Chih Lin, Hsiao-Chin Tuan, Jen-Cheng Liu, Alexander Kalnitsky, Yi-Sheng Chen
  • Publication number: 20210320139
    Abstract: Various embodiments of the present application are directed towards a semiconductor-on-insulator (SOI) DoP image sensor and a method for forming the SOI DoP image sensor. In some embodiments, a semiconductor substrate comprises a floating node and a collector region. A photodetector is in the semiconductor substrate and is defined in part by a collector region. A transfer transistor is over the semiconductor substrate. The collector region and the floating node respectively define source/drain regions of the transfer transistor. A semiconductor mesa is over and spaced from the semiconductor substrate. A readout transistor is on and partially defined by the semiconductor mesa. The semiconductor mesa is between the readout transistor and the semiconductor substrate. A via extends from the floating node to a gate electrode of the readout transistor.
    Type: Application
    Filed: June 23, 2021
    Publication date: October 14, 2021
    Inventors: Jhy-Jyi Sze, Dun-Nian Yaung, Alexander Kalnitsky
  • Publication number: 20210313394
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes an Nth metal layer in a memory region and a periphery region, the periphery region spanning a wider area than the memory region, a plurality of magnetic tunneling junctions (MTJs) over the Nth metal layer, the plurality of MTJs having at least one of mixed pitches and mixed sizes, a top electrode via over each of the plurality of MTJs, and an (N+M)th metal layer over the plurality of MTJs. A method for manufacturing the semiconductor structure is also disclosed.
    Type: Application
    Filed: June 21, 2021
    Publication date: October 7, 2021
    Inventors: ALEXANDER KALNITSKY, SHENG-HUANG HUANG, HARRY-HAK-LAY CHUANG, JIUNYU TSAI, HUNG CHO WANG
  • Patent number: 11139367
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a dielectric structure disposed over a substrate. A plurality of conductive interconnect layers are disposed within the dielectric structure. The plurality of conductive interconnect layers include alternating layers of interconnect wires and interconnect vias. A metal-insulating-metal (MIM) capacitor is arranged within the dielectric structure. The MIM capacitor has a lower conductive electrode separated from an upper conductive electrode by a capacitor dielectric structure. The MIM capacitor vertically extends past two or more of the plurality of conductive interconnect layers.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: October 5, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Seiji Takahashi, Chen-Jong Wang, Dun-Nian Yaung, Jung-I Lin, Jhy-Jyi Sze, Alexander Kalnitsky, Yimin Huang, King Liao, Shen-Hui Hong
  • Publication number: 20210305131
    Abstract: The present disclosure provides a semiconductor structure, including: a semiconductor device layer including a first surface and a second surface, wherein the first surface is at a front side of the semiconductor device layer, and the second surface is at a backside of the semiconductor device layer; an insulating layer above the second surface of the semiconductor device; and a through-silicon via (TSV) traversing the insulating layer. Associated manufacturing methods of the same are also provided.
    Type: Application
    Filed: June 11, 2021
    Publication date: September 30, 2021
    Inventors: Yu-Hung Cheng, Shih-Pei Chou, Yeur-Luen Tu, Alexander Kalnitsky, Tung-I Lin, Wei-Li Chen
  • Publication number: 20210305317
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a substrate, a transistor region., a metal interconnect, and a magnetic tunneling junction (MTJ). The transistor region includes a gate over the substrate, and a doped region is at least partially in the substrate. The metal interconnect is over the doped region. The metal interconnect includes a metal via. The MTJ is entirely underneath the metal interconnect and between the doped region and the metal via, and a diameter of a bottom surface of the MTJ is greater than a diameter of an upper surface of the MTJ.
    Type: Application
    Filed: June 9, 2021
    Publication date: September 30, 2021
    Inventors: ALEXANDER KALNITSKY, HARRY-HAK-LAY CHUANG, SHENG-HAUNG HUANG, TIEN-WEI CHIANG
  • Patent number: 11133226
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming a fully silicided (FUSI) gated device, the method including: forming a masking layer onto a gate structure over a substrate, the gate structure comprising a polysilicon layer. Forming a first source region and a first drain region on opposing sides of the gate structure within the substrate, the gate structure is formed before the first source and drain regions. Performing a first removal process to remove a portion of the masking layer and expose an upper surface of the polysilicon layer. The first source and drain regions are formed before the first removal process. Forming a conductive layer directly contacting the upper surface of the polysilicon layer. The conductive layer is formed after the first removal process. Converting the conductive layer and polysilicon layer into a FUSI layer. The FUSI layer is thin and uniform in thickness.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: September 28, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Huan Chen, Chien-Chih Chou, Ta-Wei Lin, Hsiao-Chin Tuan, Alexander Kalnitsky, Kong-Beng Thei, Chia-Hong Wu
  • Publication number: 20210294364
    Abstract: A current reference which includes a tracking voltage generator including a flipped gate transistor, a first transistor connected with the flipped gate transistor in a Vgs subtractive arrangement, an output node providing a tracking voltage which has a positive or negative temperature dependency based on the flipped gate transistor and the first transistor, and a second transistor connected to the output node; an amplifier to receive the tracking voltage and output an amplified signal; a control transistor to receive the amplified signal; a control resistor connected in series with the control transistor; and a current mirror to receive and mirror a reference current to at least one external device, the current mirror including mirroring pairs having a corresponding mirroring resistor coupled in series with a corresponding mirroring transistor, the mirroring resistor of at least one of the mirroring pairs having a serpentine structure.
    Type: Application
    Filed: June 7, 2021
    Publication date: September 23, 2021
    Inventors: Mohammad Al-Shyoukh, Alexander Kalnitsky
  • Patent number: 11121038
    Abstract: A spacer structure and a fabrication method thereof are provided. The method includes the following operations. First and second conductive structures are formed over a substrate. Dielectric layer is formed to cover the first and second conductive structures. Hard mask layer is formed over the dielectric layer. The hard mask layer covers the dielectric layer over the first conductive structure, and the hard mask layer has an opening exposing the dielectric layer over the second conductive structure. The dielectric layer exposed by the hard mask layer is etched to reduce thickness of the dielectric layer. The hard mask layer is removed. The dielectric layer is etched to form first main spacer on sidewall of the first conductive structure and second main spacer on sidewall of the second conductive structure. A first width of the first main spacer is greater than a second width of the second main spacer.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: September 14, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Alexander Kalnitsky, Kong-Beng Thei
  • Publication number: 20210265344
    Abstract: The present disclosure relates to an integrated circuit (IC) that includes a boundary region defined between a low voltage region and a high voltage region, and a method of formation. In some embodiments, the integrated circuit comprises an isolation structure disposed in the boundary region of the substrate. A first polysilicon component is disposed over the substrate alongside the isolation structure. A boundary dielectric layer is disposed on the isolation structure. A second polysilicon component is disposed on the sacrifice dielectric layer.
    Type: Application
    Filed: February 21, 2020
    Publication date: August 26, 2021
    Inventors: Yi-Huan Chen, Chien-Chih Chou, Alexander Kalnitsky, Kong-Beng Thei, Ming Chyi Liu, Shi-Chung Hsiao, Jhih-Bin Chen
  • Publication number: 20210255656
    Abstract: Voltage reference circuits are provided. A voltage reference circuit includes a transistor, a flipped-gate transistor, a first current mirror unit, a second current mirror unit and an output node. The gate and the drain of the flipped-gate transistor are coupled to the gate and the drain of the transistor. The first current mirror unit is configured to provide a first current to the flipped-gate transistor and the mirroring current in response to a bias current. The second current mirror unit is configured to drain a second current from the transistor in response to the mirroring current. The output node is coupled to the source of the transistor and the second current mirror unit, and is configured to output a reference voltage.
    Type: Application
    Filed: January 7, 2021
    Publication date: August 19, 2021
    Inventors: Yen-Ting WANG, Alan ROTH, Eric SOENEN, Alexander KALNITSKY, Liang-Tai KUO, Hsin-Li CHENG
  • Patent number: 11069652
    Abstract: A method of manufacturing a semiconductor structure is provided. The method includes providing a first substrate including a plurality of conductive bumps disposed over the first substrate; providing a second substrate; disposing a patterned adhesive over the first substrate, wherein at least a portion of the plurality of conductive bumps is exposed through the patterned adhesive; bonding the first substrate with the second substrate; and singulating a chip from the first substrate.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: July 20, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Alexander Kalnitsky, Yi-Yang Lei, Hsi-Ching Wang, Cheng-Yu Kuo, Tsung Lung Huang, Ching-Hua Hsieh, Chung-Shi Liu, Chen-Hua Yu, Chin-Yu Ku, De-Dui Liao, Kuo-Chio Liu, Kai-Di Wu, Kuo-Pin Chang, Sheng-Pin Yang, Isaac Huang
  • Patent number: 11063081
    Abstract: Various embodiments of the present application are directed towards a semiconductor-on-insulator (SOI) DoP image sensor and a method for forming the SOI DoP image sensor. In some embodiments, a semiconductor substrate comprises a floating node and a collector region. A photodetector is in the semiconductor substrate and is defined in part by a collector region. A transfer transistor is over the semiconductor substrate. The collector region and the floating node respectively define source/drain regions of the transfer transistor. A semiconductor mesa is over and spaced from the semiconductor substrate. A readout transistor is on and partially defined by the semiconductor mesa. The semiconductor mesa is between the readout transistor and the semiconductor substrate. A via extends from the floating node to a gate electrode of the readout transistor.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jhy-Jyi Sze, Dun-Nian Yaung, Alexander Kalnitsky
  • Patent number: 11063080
    Abstract: An image sensor is disclosed. The image sensor includes an epitaxial layer, a plurality of plug structures and an interconnect structure. Wherein the plurality of plug structures are formed in the epitaxial layer, and each plug structure has doped sidewalls, the epitaxial layer and the doped sidewalk form a plurality of photodiodes, the plurality of plug structures are used to separate adjacent photodiodes, and the epitaxial layer and the doped sidewalls are coupled to the interconnect structure via the plug structures. An associated method of fabricating the image sensor is also disclosed. The method includes: providing a substrate having a first-type doped epitaxial substrate layer on a second-type doped epitaxial substrate layer; forming a plurality of isolation trenches in the first-type doped epitaxial substrate layer; forming a second-type doped region along sidewalk and bottoms of the plurality of isolation trenches; and filling the plurality of isolation trenches by depositing metal.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: July 13, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Alexander Kalnitsky, Jhy-Jyi Sze, Dun-Nian Yaung, Chen-Jong Wang, Yimin Huang, Yuichiro Yamashita
  • Patent number: 11063157
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) including a pillar structure abutting a trench capacitor. A substrate has sidewalls that define a trench. The trench extends into a front-side surface of the substrate. The trench capacitor includes a plurality of capacitor electrode layers and a plurality of capacitor dielectric layers that respectively line the trench and define a cavity within the substrate. The pillar structure is disposed within the substrate. The pillar structure has a first width and a second width less than the first width. The first width is aligned with the front-side surface of the substrate and the second width is aligned with a first point disposed beneath the front-side surface.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Li Cheng, Jyun-Ying Lin, Alexander Kalnitsky, Shih-Fen Huang, Shu-Hui Su, Ting-Chen Hsu, Tuo-Hsin Chien, Felix Ying-Kit Tsui, Shi-Min Wu, Yu-Chi Chang
  • Patent number: 11063038
    Abstract: A three-dimensional (3D) integrated circuit (IC) is provided. In some embodiments, a first IC die comprises a first bonding structure and a first interconnect structure over a first semiconductor substrate. A second IC die is disposed over the first IC die and comprises a second bonding structure and a second interconnect structure over a second semiconductor substrate. A seal-ring structure extends from the first semiconductor substrate to the second semiconductor substrate. A plurality of through silicon via (TSV) coupling structures is arranged in the peripheral region of the 3D IC along an inner perimeter of the seal-ring structure and closer to the 3D IC than the seal-ring structure. The plurality of TSV coupling structures respectively comprises a TSV disposed in the second semiconductor substrate and electrically coupling to the 3D IC through a stack of TSV wiring layers and inter-wire vias.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kong-Beng Thei, Dun-Nian Yaung, Fu-Jier Fan, Hsing-Chih Lin, Hsiao-Chin Tuan, Jen-Cheng Liu, Alexander Kalnitsky, Yi-Sheng Chen
  • Publication number: 20210202761
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) including a pillar structure abutting a trench capacitor. A substrate has sidewalls that define a trench. The trench extends into a front-side surface of the substrate. The trench capacitor includes a plurality of capacitor electrode layers and a plurality of capacitor dielectric layers that respectively line the trench and define a cavity within the substrate. The pillar structure is disposed within the substrate. The pillar structure has a first width and a second width less than the first width. The first width is aligned with the front-side surface of the substrate and the second width is aligned with a first point disposed beneath the front-side surface.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 1, 2021
    Inventors: Hsin-Li Cheng, Jyun-Ying Lin, Alexander Kalnitsky, Shih-Fen Huang, Shu-Hui Su, Ting-Chen Hsu, Tuo-Hsin Chien, Felix Ying-Kit Tsui, Shi-Min Wu, Yu-Chi Chang