Patents by Inventor Alexander Leube

Alexander Leube has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240122467
    Abstract: A method, a device, and a computer program product for determining a refractive error of an eye of a user are disclosed, as well as a method for producing a spectacle lens. The method for determining includes: displaying an image with a spatial modulation to the user; optionally, recording a reaction of the user to a variation of the spatial modulation over time; detecting a point in time at which a perception threshold of the user is reached; and determining the refractive error of the user from the spatial modulation, wherein the image contains a source image with several picture elements, wherein values for an image parameter are assigned to the picture elements, and wherein the spatial modulation is generated such that the values of the image parameter determine the values of a modulation parameter of the spatial modulation in the image.
    Type: Application
    Filed: December 28, 2023
    Publication date: April 18, 2024
    Inventors: Alexander Leube, Torsten Strasser, Arne Ohlendorf, Eberhart Zrenner, Siegfried Wahl
  • Patent number: 11944383
    Abstract: Apparatuses and methods for determining a refractive error of an eye are disclosed. A series of images of light coming from an eye are captured with varying optical powers, and the refractive error is then calculated based directly on the series of images used as approximate point spread functions. The calculation includes determining a modulation transfer area as a function of meridian angle and optical power in an angle range from 0° to 180° based on the series of images, and to calculate the refractive error based on the modulation transfer area as a function of angle and optical power.
    Type: Grant
    Filed: August 15, 2023
    Date of Patent: April 2, 2024
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Nikolai Suchkov, Alexander Leube, Siegfried Wahl
  • Patent number: 11892366
    Abstract: A method, a computer program product, and a system for determining an optical parameter of an optical lens as well as a related method for producing the optical lens by adjusting the optical parameter are disclosed. The method includes: capturing an image picturing the optical lens by using a camera; and determining an optical parameter of the optical lens by processing the image, wherein the camera generates a signal related to a position of a focus, and the optical parameter of the optical lens is determined by using the signal related to the position of focus. The method and the system allow determining the optical parameter of the optical lens in a direct fashion by applying the signal related to the position of the focus as generated by the camera as a measured value for the optical parameter of the optical lens.
    Type: Grant
    Filed: March 29, 2023
    Date of Patent: February 6, 2024
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Alexander Leube, Eric Nehrbass, Siegfried Wahl
  • Patent number: 11849997
    Abstract: Apparatuses or methods for determining a refractive error of an eye are disclosed. An intensity of light coming from an eye is measured, using a detector device, through at least two or at least three different apertures of the aperture device. The refractive error is then calculated based on the measured intensities.
    Type: Grant
    Filed: March 10, 2023
    Date of Patent: December 26, 2023
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Nikolai Suchkov, Alexander Leube, Siegfried Wahl
  • Publication number: 20230404395
    Abstract: A computer-implemented method, a computer program, and a device for determining a visual performance of an eye of a person are disclosed. The method includes displaying to at least one eye of a person a visual stimulus configured to elicit at least one type of eye movement in the at least one eye of the person with at least one screen; tracking the at least one type of eye movements in the at least one eye of the person with at least one eye tracker; determining the visual performance of the at least one eye of the person by using at least one first piece of information about the at least one visual stimulus and at least one second piece of information about an occurrence of the at least one type of eye movements in the at least one eye of the person with at least one processing unit.
    Type: Application
    Filed: August 15, 2023
    Publication date: December 21, 2023
    Inventors: Siegfried Wahl, Peter Essig, Yannick Sauer, Alexander Leube
  • Publication number: 20230380681
    Abstract: Apparatuses and methods for determining a refractive error of an eye are disclosed. A series of images of light coming from an eye are captured with varying optical powers, and the refractive error is then calculated based directly on the series of images used as approximate point spread functions. The calculation includes determining a modulation transfer area as a function of meridian angle and optical power in an angle range from 0° to 180° based on the series of images, and to calculate the refractive error based on the modulation transfer area as a function of angle and optical power.
    Type: Application
    Filed: August 15, 2023
    Publication date: November 30, 2023
    Inventors: Nikolai Suchkov, Alexander Leube, Siegfried Wahl
  • Publication number: 20230243717
    Abstract: A method, a computer program product, and a system for determining an optical parameter of an optical lens, as well as a related method for producing the optical lens by adjusting the optical parameter are disclosed. The method includes: a) capturing an image picturing the optical lens by using a camera; and b) determining an optical parameter of the optical lens by processing the image, wherein the camera generates a signal related to a position of a focus, and the optical parameter of the optical lens is determined by using the signal related to the position of focus. The method and the system allow determining the optical parameter of the optical lens in a direct fashion by applying the signal related to the position of the focus as generated by the camera as a measured value for the optical parameter of the optical lens.
    Type: Application
    Filed: March 29, 2023
    Publication date: August 3, 2023
    Inventors: Alexander Leube, Eric Nehrbass, Siegfried Wahl
  • Publication number: 20230210361
    Abstract: Apparatuses or methods for determining a refractive error of an eye are disclosed. An intensity of light coming from an eye is measured, using a detector device, through at least two or at least three different apertures of the aperture device. The refractive error is then calculated based on the measured intensities.
    Type: Application
    Filed: March 10, 2023
    Publication date: July 6, 2023
    Inventors: Nikolai Suchkov, Alexander Leube, Siegfried Wahl
  • Publication number: 20230181029
    Abstract: A method, a computer program, and a device for determining at least one astigmatic effect of at least one eye of a person are disclosed, as well as a related method for producing at least one spectacle lens for the at least one eye of the person. The method for determining the astigmatic effect includes: a) displaying an image to an eye of the person, the image including a line with a plurality of sections, wherein an orientation of each section with respect to an optical axis of the image differs from each other, respectively; b) recording a reaction of the person to the image at at least one point in time; and c) determining at least one value for at least one astigmatic effect of at least one eye of the person by evaluating the at least one reaction of the person at the point in time.
    Type: Application
    Filed: February 7, 2023
    Publication date: June 15, 2023
    Inventors: Alexander Leube, Arne Ohlendorf, Eric Nehrbass, Siegfried Wahl
  • Patent number: 11662600
    Abstract: A device, a method, and a computer program for producing two point light sources of the same wavelength on a pupil plane of an eye of a user are disclosed, as well as a device, a method, and a computer program for determining a neural transfer function of the visual pathway of the user. The device for determining the neural transfer function includes a coherent light source for generating a light beam; an optical device for separating the light beam into sub-light beams, superpositioning the respective sub-light beams, and adjusting contrast and spatial phase in an interference pattern; and a beam path for guiding the superposed sub-light beams such that two point light sources of the same wavelength are produced. The devices are compact and robust, allow a variable presentation of different interference patterns, and can thus be easily operated in a commercial product in a clinical setting.
    Type: Grant
    Filed: November 7, 2022
    Date of Patent: May 30, 2023
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Alexander Leube, Nikolai Suchkov, Christina Schwarz, Siegfried Wahl
  • Publication number: 20230090748
    Abstract: A device, a method, and a computer program for producing two point light sources of the same wavelength on a pupil plane of an eye of a user are disclosed, as well as a device, a method, and a computer program for determining a neural transfer function of the visual pathway of the user. The device for determining the neural transfer function includes a coherent light source for generating a light beam; an optical device for separating the light beam into sub-light beams, superpositioning the respective sub-light beams, and adjusting contrast and spatial phase in an interference pattern; and a beam path for guiding the superposed sub-light beams such that two point light sources of the same wavelength are produced. The devices are compact and robust, allow a variable presentation of different interference patterns, and can thus be easily operated in a commercial product in a clinical setting.
    Type: Application
    Filed: November 7, 2022
    Publication date: March 23, 2023
    Inventors: Alexander Leube, Nikolai Suchkov, Christina Schwarz, Siegfried Wahl
  • Publication number: 20230064322
    Abstract: A method, a device, and a computer program product for determining a refractive error of an eye of a user are disclosed, as well as a method for producing a spectacle lens. The method for determining includes: a) displaying an image with a spatial modulation to the user; b) optionally, recording a reaction of the user to a variation of the spatial modulation over time; c) detecting a point in time at which a perception threshold of the user is reached; and d) determining the refractive error of the user from the spatial modulation, wherein the image contains a source image with several picture elements, wherein values for an image parameter are assigned to the picture elements, and wherein the spatial modulation is generated such that the values of the image parameter determine the values of a modulation parameter of the spatial modulation in the image.
    Type: Application
    Filed: October 25, 2022
    Publication date: March 2, 2023
    Inventors: Alexander Leube, Torsten Strasser, Arne Ohlendorf, Eberhart Zrenner, Siegfried Wahl
  • Patent number: 11445904
    Abstract: Methods and apparatuses for joint determination of accommodation and vergence of at least one eye of a user are disclosed. The joint determination includes determining an accommodation of the eye of the user and ascertaining values for checking myopia of the eye by presenting a sign at a first distance in front of the eye to stimulate the accommodation of the eye; capturing an eye movement; ascertaining a refraction of the eye with the accommodation of the eye at the first distance; and joint determination of accommodation and vergence of the eye by ascertaining a change in the refraction of the eye with the accommodation of the eye at the first distance in relation to the accommodation of the eye at a second distance; and ascertaining the vergence of the eye from the eye movement of the eye with the accommodation of the eye at the first distance.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: September 20, 2022
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Alexander Leube, Arne Ohlendorf, Siegfried Wahl
  • Publication number: 20220151484
    Abstract: Methods and apparatuses for joint determination of accommodation and vergence of at least one eye of a user are disclosed. The joint determination includes determining an accommodation of the eye of the user and ascertaining values for checking myopia of the eye by presenting a sign at a first distance in front of the eye to stimulate the accommodation of the eye; capturing an eye movement; ascertaining a refraction of the eye with the accommodation of the eye at the first distance; and joint determination of accommodation and vergence of the eye by ascertaining a change in the refraction of the eye with the accommodation of the eye at the first distance in relation to the accommodation of the eye at a second distance; and ascertaining the vergence of the eye from the eye movement of the eye with the accommodation of the eye at the first distance.
    Type: Application
    Filed: February 1, 2022
    Publication date: May 19, 2022
    Inventors: Alexander Leube, Arne Ohlendorf, Siegfried Wahl
  • Patent number: 11333906
    Abstract: A method, a device, and a computer program for determining at least one optical parameter of a spectacle lens, and a method for manufacturing the spectacle lens using the at least one optical parameter are disclosed. The optical parameter denotes a value for a property of the spectacle lens which is adjusted during manufacture of the spectacle lens to achieve an intended correction of ametropia of at least one eye of a user of the spectacle lens. The method includes: a) capturing at least one image of a user wearing the spectacle lens; and b) determining at least one optical parameter of the spectacle lens by image processing the at least one image, wherein the at least one image contains an eye portion including at least one eye and/or a face portion adjacent to at least one eye of a user of the spectacle lens.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: May 17, 2022
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Arne Ohlendorf, Alexander Leube, Siegfried Wahl, Katharina Rifai, Yannick Sauer
  • Publication number: 20220039646
    Abstract: A method, a device, and a computer program for determining a refractive error of at least one eye of a user are disclosed, as well as a method for manufacturing a spectacle lens for the user. The method entails: displaying a periodic pattern on a screen, wherein a parameter of the periodic pattern includes at least one spatial frequency, wherein the parameter of the periodic pattern is varied; detecting a reaction of the user indicating that the user is able to perceive the periodic pattern; determining a point in time at which the user perceives the periodic pattern; and determining a value for the refractive error of the eye or eyes of the user from the periodic pattern at that point in time, wherein the value for the refractive error is determined from the at least one spatial frequency, determined at the point in time, of the periodic pattern.
    Type: Application
    Filed: October 22, 2021
    Publication date: February 10, 2022
    Inventors: Arne Ohlendorf, Alexander Leube, Siegfried Wahl
  • Publication number: 20220039645
    Abstract: A method, a device, and a computer program for determining a refractive error of at least one eye of a user are disclosed, as well as a method for producing a spectacles lens for the user. The method includes: displaying at least one symbol on a screen, wherein at least one parameter of the symbol displayed on the screen is changed; detecting eye movement metrics of the eye of the user according to the symbol displayed on the screen; establishing a point in time at which a recognition threshold of the user is revealed for the symbol displayed on the screen from the eye movement metrics of the eye of the user; and determining a value for the refractive error of the eye of the user from the at least one parameter established at the point in time.
    Type: Application
    Filed: October 22, 2021
    Publication date: February 10, 2022
    Inventors: Alexander Leube, Arne Ohlendorf, Siegfried Wahl
  • Publication number: 20210382329
    Abstract: A method, a device, and a computer program for determining at least one optical parameter of a spectacle lens, and a method for manufacturing the spectacle lens using the at least one optical parameter are disclosed. The optical parameter denotes a value for a property of the spectacle lens which is adjusted during manufacture of the spectacle lens to achieve an intended correction of ametropia of at least one eye of a user of the spectacle lens. The method includes: a) capturing at least one image of a user wearing the spectacle lens; and b) determining at least one optical parameter of the spectacle lens by image processing the at least one image, wherein the at least one image contains an eye portion including at least one eye and/or a face portion adjacent to at least one eye of a user of the spectacle lens.
    Type: Application
    Filed: August 23, 2021
    Publication date: December 9, 2021
    Inventors: Arne Ohlendorf, Alexander Leube, Siegfried Wahl, Katharina Rifai, Yannick Sauer
  • Patent number: 11143886
    Abstract: A method for optimizing an optical aid by way of automatic measurement of the subjective visual performance, a method for producing a correspondingly optimized optical aid, an apparatus for producing optical aids, a computer program having a program code for carrying out the optimization method, which program can be run on a processor, and a non-transitory storage medium comprising the computer program stored thereon are disclosed. The method for optimizing the optical aid includes the automatic determination of subjective visual acuity using machine learning.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: October 12, 2021
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Alexander Leube, Christian Leibig, Arne Ohlendorf, Siegfried Wahl
  • Patent number: 11129526
    Abstract: A device and computer program for determining the spherocylindrical refraction of an eye are disclosed. A component having adjustable optics is provided, the refractive power of which can be adjusted via a refractive power adjustment device. The spherocylindrical refraction is then determined from the adjustment of the refractive power adjustment device at different orientations of a typical direction of the optics or a typical direction of eye test characters.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: September 28, 2021
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Arne Ohlendorf, Alexander Leube