Patents by Inventor Alexander Lifson

Alexander Lifson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11225186
    Abstract: A system for monitoring a mobile refrigerant system including one or more system components is provided. The system includes a global positioning system, a performance monitor, and a processor. The global positioning system includes a receiver that provides a locator signal. The performance monitor provides a monitor signal indicative of operational performance of at least one of the system components of the refrigerant system. The processor is adapted to receive and combine the locator signal and the monitor signal, and produce a combined locator and monitor signal output.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: January 18, 2022
    Assignee: Carrier Corporation
    Inventors: Alexander Lifson, Michael F. Taras
  • Patent number: 11029040
    Abstract: A heating system includes a refrigerant boiler including a heat source for heating a refrigerant from a liquid state to a vapor state, a boiler outlet and a boiler inlet; a heat exchanger in fluid communication with the refrigerant boiler, the heat exchanger including a upper manifold having a heat exchanger inlet coupled to the boiler outlet, a lower manifold having a heat exchanger outlet coupled to the boiler inlet and a plurality of tubes connecting the upper manifold and the lower manifold, wherein refrigerant passes from the upper manifold to the lower manifold via gravity; and a fan moving air over the heat exchanger to define supply air for a space to be heated.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: June 8, 2021
    Assignee: CARRIER CORPORATION
    Inventors: Richard G. Lord, Michael F. Taras, Alexander Lifson, Eugene Duane Daddis, Jr., Ludgina Fils Dieujuste, Kenneth J. Nieva
  • Patent number: 10799828
    Abstract: A seal member (80) for a rotary regenerative scrubber (10) includes a hub (30), a rim (48) circumferentially surrounding the hub, and a plurality of spokes (86) extending from the hub to the rim. The hub, rim, and spokes define an axially facing seal face (88) configured to form a sealing engagement with an opposed seal surface of a rotary regenerative scrubber, and a mounting face (90) axially opposed to the seal face configured for mounting to a rotor assembly (20) of a rotary regenerative scrubber. The seal face includes a labyrinth seal (92) defined therein.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: October 13, 2020
    Assignee: Carrier Corporation
    Inventors: Farley William Postgate, Alexander Lifson
  • Patent number: 10704813
    Abstract: An ejector has: a motive flow inlet; a secondary flow inlet; an outlet; a motive nozzle; a diffuser; and a control needle shiftable between a first position and a second position. The ejector comprises: an inlet body bearing the motive flow inlet and the secondary flow inlet; a diffuser body forming the diffuser and bearing the outlet; a motive nozzle insert forming the motive nozzle in a compartment in the inlet body; and a needle guide insert in the motive nozzle insert.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: July 7, 2020
    Assignee: Carrier Corporation
    Inventors: Steven A. Lozyniak, Alexander Lifson, Zuojun Shi, Parmesh Verma, Kenneth E. Cresswell, J. Michael Griffin, Thomas D. Radcliff
  • Patent number: 10619629
    Abstract: A backer for a reed valve has: a first surface for engaging the valve reed; a second surface opposite the first surface; a base portion for mounting to a compressor housing; a distal portion for engaging a distal portion of the reed; and at least one trunk connecting the base portion to the distal portion. The first surface is transversely convex along a portion of the trunk. The trunk is relatively wider near the base portion than near the distal portion.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: April 14, 2020
    Assignee: Carrier Corporation
    Inventor: Alexander Lifson
  • Publication number: 20190331373
    Abstract: An ejector has: a motive flow inlet; a secondary flow inlet; an outlet; a motive nozzle; a diffuser; and a control needle shiftable between a first position and a second position. The ejector comprises: an inlet body bearing the motive flow inlet and the secondary flow inlet; a diffuser body forming the diffuser and bearing the outlet; a motive nozzle insert forming the motive nozzle in a compartment in the inlet body; and a needle guide insert in the motive nozzle insert.
    Type: Application
    Filed: June 21, 2019
    Publication date: October 31, 2019
    Applicant: Carrier Corporation
    Inventors: Steven A. Lozyniak, Alexander Lifson, Zuojun Shi, Parmesh Verma, Kenneth E. Cresswell, J. Michael Griffin, Thomas D. Radcliff
  • Patent number: 10352592
    Abstract: A vapor compression system (200; 300; 400) has: a compressor (22); a first heat exchanger (30); a second heat exchanger (64); an ejector (38); separator (48); and an expansion device (70). A plurality of conduits are positioned to define a first flowpath sequentially through: the compressor; the first heat exchanger; the ejector from a motive flow inlet through (40) an outlet (44); and the separator, and then branching into: a first branch returning to the compressor; and a second branch passing through the expansion device and second heat exchanger to a secondary flow inlet (42). The plurality of conduits are positioned to define a bypass flowpath (202; 302; 402) bypassing the motive flow inlet and rejoining the first flowpath at essentially separator pressure but away from the separator.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: July 16, 2019
    Assignee: Carrier Corporation
    Inventors: Alexander Lifson, Zuojun Shi, Hans-Joachim Huff, Parmesh Verma, Thomas D. Radcliff, Frederick J. Cogswell, Jinliang Wang, Hongsheng Liu
  • Patent number: 10337507
    Abstract: A reciprocating compressor includes a cylinder block, a cylinder head, and a bypass unloader valve assembly. The cylinder block has a cylinder disposed therein. The cylinder head is secured to the cylinder block overlying the cylinder and has a suction plenum and a discharge plenum in selective fluid communication with the cylinder. The bypass unloader valve assembly is in operable communication with the cylinder head and is responsive to control signals to rapid cycle to allow for fluid communication of a refrigerant between the discharge plenum and the suction plenum.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: July 2, 2019
    Assignee: CARRIER CORPORATION
    Inventors: Alexander Lifson, Michael F. Taras
  • Patent number: 10253766
    Abstract: A compressor (22) has: a case (32) defining: a first cylinder bank (70) having a plurality of cylinders (76, 77); a cylinder head (100); a suction port (26); a discharge port (28); and an economizer port (30); a plurality of pistons, each individually associated with a respective one of the cylinders; and a crankshaft (202) held by the case for rotation about a crankshaft axis and coupled to the pistons. The first cylinder bank cylinder head is divided into: a first suction chamber (130); a second suction chamber (132); and a single discharge chamber (128). The first cylinder bank first suction chamber is coupled to the suction port. The first cylinder bank second suction chamber is coupled to the economizer port. The first cylinder bank discharge chamber is coupled to the discharge port.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: April 9, 2019
    Assignee: Carrier Corporation
    Inventors: Alexander Lifson, Paul J. Flanigan
  • Publication number: 20180372384
    Abstract: A refrigerant system includes at least one compressor that compresses refrigerant and delivers it downstream to a heat rejection heat exchanger. The heat rejection heat exchanger is a microchannel heat exchanger. Refrigerant passes from the heat rejection heat exchanger downstream to an expansion device, from the expansion device through an evaporator, and from the evaporator back to the at least one compressor. A control operates at least one compressor and the expansion device to reduce pressure spikes at transient conditions.
    Type: Application
    Filed: August 31, 2018
    Publication date: December 27, 2018
    Inventors: Michael F. Taras, Alexander Lifson
  • Patent number: 10107535
    Abstract: A refrigerant system includes at least one compressor (54, 56) that compresses refrigerant and delivers it downstream to a heat rejection heat exchanger (26). The heat rejection heat exchanger is a microchannel heat exchanger. Refrigerant passes from the heat rejection heat exchanger downstream to an expansion device (60), from the expansion device through an evaporator (66), and from the evaporator back to the at least one compressor. A control (58) operates at least one compressor and the expansion device to reduce pressure spikes at transient conditions.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: October 23, 2018
    Assignee: Carrier Corporation
    Inventors: Michael F. Taras, Alexander Lifson
  • Publication number: 20180245821
    Abstract: A refrigerant vapor compression system includes a compression device having at least a first compression stage and a second compression stage arranged in series refrigerant flow relationship; a first refrigerant heat rejecting heat exchanger disposed downstream with respect to refrigerant flow of the second compression stage for passing the refrigerant in heat exchange relationship with a first secondary fluid; a second refrigerant heat rejecting heat exchanger disposed downstream with respect to refrigerant flow of the first refrigerant heat rejecting heat exchanger for passing the refrigerant in heat exchange relationship with a second secondary fluid.
    Type: Application
    Filed: April 27, 2018
    Publication date: August 30, 2018
    Inventors: Hans-Joachim Huff, KeonWoo Lee, Lucy Yi Liu, Suresh Duraisamy, Zvonko Asprovski, Kursten Lamendola, Alexander Lifson
  • Publication number: 20180209666
    Abstract: A heating system includes a refrigerant boiler including a heat source for heating a refrigerant from a liquid state to a vapor state, a boiler outlet and a boiler inlet; a heat exchanger in fluid communication with the refrigerant boiler, the heat exchanger including a upper manifold having a heat exchanger inlet coupled to the boiler outlet, a lower manifold having a heat exchanger outlet coupled to the boiler inlet and a plurality of tubes connecting the upper manifold and the lower manifold, wherein refrigerant passes from the upper manifold to the lower manifold via gravity; and a fan moving air over the heat exchanger to define supply air for a space to be heated.
    Type: Application
    Filed: March 19, 2018
    Publication date: July 26, 2018
    Inventors: Richard G. Lord, Michael F. Taras, Alexander Lifson, Eugene Duane Daddis, JR., Ludgina Fils Dieujuste, Kenneth J. Nieva
  • Patent number: 10006681
    Abstract: A pulse width modulation control is provided for a suction valve located on a suction line. When the flow rate through a refrigerant system needs to be reduced, the suction valve is rapidly cycled from an open position to a closed position. A bypass line connecting compressor discharge to compressor suction with a bypass valve and a discharge valve positioned on the discharge side of the compressor are also provided. When the control closes the suction valve, it also closes the discharge valve to prevent the refrigerant to backflow into the bypass line, and, at the same time, the control opens the bypass valve. Opening of the bypass valve reduces discharge pressure, leading to reduction in compressor power consumption and subsequent operating efficiency gain.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: June 26, 2018
    Assignee: Carrier Corporation
    Inventors: Alexander Lifson, Michael F. Taras
  • Patent number: 9995516
    Abstract: A superheat control utilizes a sensor at a location downstream of an evaporator after some heat is delivered to the refrigerant. In one embodiment, the compressor is a sealed compressor with at least a portion of the refrigerant being heated by an electric motor. The temperature is sensed after the refrigerant temperature has increased after passing over the electric motor. In another embodiment, the refrigerant temperature is measured after some minimal compression and minimal temperature rise has occurred within the compressor pumping elements. In either case, by measuring the temperature of the refrigerant after some additional heat has been added to the refrigerant, the refrigerant super-heat leaving the evaporator can be controlled to a lower value. The improved superheat control enhances the system performance by increasing system efficiency, system capacity and improving oil return to the compressor.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: June 12, 2018
    Assignee: Carrier Corporation
    Inventors: Alexander Lifson, Michael F. Taras, Richard Lord
  • Publication number: 20180156499
    Abstract: A vapor compression system (200; 300; 400) comprising: a compressor (22); a first heat exchanger (30); a second heat exchanger (64); an ejector (38); separator (48); and an expansion device (70). A plurality of conduits are positioned to define a first flowpath sequentially through: the compressor; the first heat exchanger; the ejector from a motive flow inlet through (40) an outlet (44); and the separator, and then branching into: a first branch returning to the compressor; and a second branch passing through the expansion device and second heat exchanger to a secondary flow inlet (42). The plurality of conduits are positioned to define a bypass flowpath (202; 302; 402) bypassing the motive flow inlet and rejoining the first flowpath at essentially separator pressure but away from the separator.
    Type: Application
    Filed: May 26, 2016
    Publication date: June 7, 2018
    Applicant: Carrier Corporation
    Inventors: Alexander Lifson, Zuojun Shi, Hans-Joachim Huff, Parmesh Verma, Thomas D. Radcliff, Frederick J. Cogswell, Jinliang Wang, Hongsheng Liu
  • Patent number: 9989279
    Abstract: A refrigerant vapor compression system includes a compression device having at least a first compression stage and a second compression stage, a refrigerant heat rejection heat exchanger disposed downstream with respect to refrigerant flow of the second compression stage, and a refrigerant intercooler disposed intermediate the first compression stage and the second compression stage. The refrigerant intercooler is disposed downstream of the refrigerant heat rejection heat exchanger with respect to the flow of a secondary fluid. A second refrigerant heat rejection heat exchanger may be disposed downstream with respect to refrigerant flow of the aforesaid refrigerant heat rejection heat exchanger, and a second refrigerant intercooler may be disposed intermediate the first compression stage and the second compression stage and downstream with respect to refrigerant flow of the aforesaid refrigerant intercooler.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: June 5, 2018
    Assignee: CARRIER CORPORATION
    Inventors: Hans-Joachim Huff, KeonWoo Lee, Lucy Yi Liu, Suresh Duraisamy, Zvonko Asprovski, Kursten Lamendola, Alexander Lifson
  • Publication number: 20180128254
    Abstract: A compressor (22) has: a case (32) defining: a first cylinder bank (70) having a plurality of cylinders (76, 77); a cylinder head (100); a suction port (26); a discharge port (28); and an economizer port (30); a plurality of pistons, each individually associated with a respective one of the cylinders; and a crankshaft (202) held by the case for rotation about a crankshaft axis and coupled to the pistons. The first cylinder bank cylinder head is divided into: a first suction chamber (130); a second suction chamber (132); and a single discharge chamber (128). The first cylinder bank first suction chamber is coupled to the suction port. The first cylinder bank second suction chamber is coupled to the economizer port. The first cylinder bank discharge chamber is coupled to the discharge port.
    Type: Application
    Filed: May 9, 2016
    Publication date: May 10, 2018
    Applicant: Carrier Corporation
    Inventors: Alexander LIFSON, Paul J. FLANIGAN
  • Publication number: 20180043816
    Abstract: A system for monitoring a mobile refrigerant system including one or more system components is provided. The system includes a global positioning system, a performance monitor, and a processor. The global positioning system includes a receiver that provides a locator signal. The performance monitor provides a monitor signal indicative of operational performance of at least one of the system components of the refrigerant system. The processor is adapted to receive and combine the locator signal and the monitor signal, and produce a combined locator and monitor signal output.
    Type: Application
    Filed: October 6, 2017
    Publication date: February 15, 2018
    Inventors: Alexander Lifson, Michael F. Taras
  • Patent number: 9890982
    Abstract: A variable speed electric drive for use in refrigerant systems includes an electric motor for driving an associated component at a variable speed that is a function of an operating frequency of the motor; and a control for supplying alternating discrete drive frequencies to the electric motor to provide a continuously variable speed drive of the associated component. The control cycles the drive frequency to the electric motor among the at least two discrete frequencies so that the variable average resultant speed at which the associated component is driven is a function of a combination of the selected at least two discrete frequencies.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: February 13, 2018
    Assignee: CARRIER CORPORATION
    Inventors: Alexander Lifson, Michael F. Taras