Patents by Inventor Alexander M. Dizhoor

Alexander M. Dizhoor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11883463
    Abstract: Nucleic acid vectors encoding light-gated cation-selective membrane channels, in particular channelrhodopsin-2 (Chop2), converted inner retinal neurons to photosensitive cells in photoreceptor-degenerated retina in an animal model. Such treatment restored visual perception and various aspects of vision. A method of restoring light sensitivity to a retina of a subject suffering from vision loss due to photoreceptor degeneration, as in retinitis pigmentosa or macular degeneration, is provided. The method comprises delivering to the subject by intravitreal or subretinal injection, the above nucleic acid vector which comprises an open reading frame encoding a rhodopsin, to which is operatively linked a promoter and transcriptional regulatory sequences, so that the nucleic acid is expressed in inner retinal neurons.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: January 30, 2024
    Assignees: Wayne State University, Salus University
    Inventors: Zhuo-Hua Pan, Alexander M. Dizhoor
  • Publication number: 20210100875
    Abstract: Nucleic acid vectors encoding light-gated cation-selective membrane channels, in particular channelrhodopsin-2 (Chop2), converted inner retinal neurons to photosensitive cells in photoreceptor-degenerated retina in an animal model. Such treatment restored visual perception and various aspects of vision. A method of restoring light sensitivity to a retina of a subject suffering from vision loss due to photoreceptor degeneration, as in retinitis pigmentosa or macular degeneration, is provided. The method comprises delivering to the subject by intravitreal or subretinal injection, the above nucleic acid vector which comprises an open reading frame encoding a rhodopsin, to which is operatively linked a promoter and transcriptional regulatory sequences, so that the nucleic acid is expressed in inner retinal neurons.
    Type: Application
    Filed: December 2, 2019
    Publication date: April 8, 2021
    Inventors: Zhuo-Hua PAN, Alexander M. Dizhoor
  • Publication number: 20180214513
    Abstract: Nucleic acid vectors encoding light-gated cation-selective membrane channels, in particular channelrhodopsin-2 (Chop2), converted inner retinal neurons to photosensitive cells in photoreceptor-degenerated retina in an animal model. Such treatment restored visual perception and various aspects of vision. A method of restoring light sensitivity to a retina of a subject suffering from vision loss due to photoreceptor degeneration, as in retinitis pigmentosa or macular degeneration, is provided. The method comprises delivering to the subject by intravitreal or subretinal injection, the above nucleic acid vector which comprises an open reading frame encoding a rhodopsin, to which is operatively linked a promoter and transcriptional regulatory sequences, so that the nucleic acid is expressed in inner retinal neurons.
    Type: Application
    Filed: August 14, 2017
    Publication date: August 2, 2018
    Inventors: Zhuo-Hua PAN, Alexander M. DIZHOOR
  • Patent number: 9730981
    Abstract: Nucleic acid vectors encoding light-gated cation-selective membrane channels, in particular channelrhodopsin-2 (Chop2), converted inner retinal neurons to photosensitive cells in photoreceptor-degenerated retina in an animal model. Such treatment restored visual perception and various aspects of vision. A method of restoring light sensitivity to a retina of a subject suffering from vision loss due to photoreceptor degeneration, as in retinitis pigmentosa or macular degeneration, is provided. The method comprises delivering to the subject by intravitreal or subretinal injection, the above nucleic acid vector which comprises an open reading frame encoding a rhodopsin, to which is operatively linked a promoter and transcriptional regulatory sequences, so that the nucleic acid is expressed in inner retinal neurons.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: August 15, 2017
    Assignees: Salus University, Wayne State University
    Inventors: Zhuo-Hua Pan, Alexander M. Dizhoor
  • Patent number: 8470790
    Abstract: Nucleic acid vectors encoding light-gated cation-selective membrane channels, in particular channelrhodopsin-2 (Chop2), converted inner retinal neurons to photosensitive cells in photoreceptor-degenerated retina in an animal model. Such treatment restored visual perception and various aspects of vision. A method of restoring light sensitivity to a retina of a subject suffering from vision loss due to photoreceptor degeneration, as in retinitis pigmentosa or macular degeneration, is provided. The method comprises delivering to the subject by intravitreal or subretinal injection, the above nucleic acid vector which comprises an open reading frame encoding a rhodopsin, to which is operatively linked a promoter and transcriptional regulatory sequences, so that the nucleic acid is expressed in inner retinal neurons.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: June 25, 2013
    Assignees: Wayne State University, Salus University
    Inventors: Zhuo-Hua Pan, Alexander M. Dizhoor
  • Publication number: 20100015095
    Abstract: Nucleic acid vectors encoding light-gated cation-selective membrane channels, in particular channelrhodopsin-2 (Chop2), converted inner retinal neurons to photosensitive cells in photoreceptor-degenerated retina in an animal model. Such treatment restored visual perception and various aspects of vision. A method of restoring light sensitivity to a retina of a subject suffering from vision loss due to photoreceptor degeneration, as in retinitis pigmentosa or macular degeneration, is provided. The method comprises delivering to the subject by intravitreal or subretinal injection, the above nucleic acid vector which comprises an open reading frame encoding a rhodopsin, to which is operatively linked a promoter and transcriptional regulatory sequences, so that the nucleic acid is expressed in inner retinal neurons.
    Type: Application
    Filed: May 4, 2007
    Publication date: January 21, 2010
    Applicants: Wayne State University, Pennsylvania College of Optometry
    Inventors: Zhuo-Hua Pan, Alexander M. Dizhoor