Patents by Inventor Alexander ONIC

Alexander ONIC has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190271764
    Abstract: A method for testing at least one reception path in a radar receiver is provided. The reception path contains a mixer and a downstream signal processing circuit. The method involves injecting a test signal into the reception path, so that at least a first test tone having a frequency in a passband of the signal processing circuit and a second test tone having a frequency outside the passband are present on the reception path downstream of the mixer. Further, the method involves tapping off a baseband signal, generated by the signal processing circuit, from the reception path, the baseband signal being based on the test signal.
    Type: Application
    Filed: February 26, 2019
    Publication date: September 5, 2019
    Applicant: Infineon Technologies AG
    Inventors: Alexander ONIC, Bernhard GSTOETTENBAUER, Thomas LANGSCHWERT, Jochen O. Schrattenecker, Rainer STUHLBERGER
  • Patent number: 10371800
    Abstract: Exemplary embodiments disclosed herein relate to a radar device. The radar device may transmit an RF oscillator signal to a radar channel and receive a respective first RF radar signal from the radar channel. The radar device may further generate a second RF radar signal. Frequency conversion circuits are also disclosed to down-convert the first RF radar signal and the second RF radar signal. An analog-to digital conversion unit may digitize the down-converted first RF radar signal and the down-converted second RF radar signal to generate a first digital signal and a second digital signal, respectively. A digital signal processing unit is disclosed to estimate a phase noise signal included in the second digital signal and to generate a cancellation signal based on the estimated phase noise signal. The cancellation signal is subtracted from the first digital radar signal to obtain a noise compensated digital radar signal.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: August 6, 2019
    Assignee: Infineon Technologies AG
    Inventors: Mario Huemer, Alexander Melzer, Alexander Onic, Florian Starzer, Rainer Stuhlberger
  • Publication number: 20190235051
    Abstract: A method is described that, according to one exemplary embodiment, involves the following: generating a first radio frequency (RF) signal by a first RF oscillator and a second RF signal by a second RF oscillator, mixing the first RF signal and the second RF signal by a mixer to generate a mixer output signal, digitizing the mixer output signal to generate a digitized signal, and calculating an estimate for a power spectral density of the mixer output signal from the digitized signal. Based on the estimate for the power spectral density of the mixer output signal, an estimate for a noise power spectral density characterizing the noise contained in the first and the second RF signals is calculated.
    Type: Application
    Filed: January 28, 2019
    Publication date: August 1, 2019
    Applicant: Infineon Technologies AG
    Inventors: Alexander MELZER, Michael GERSTMAIR, Mario HUEMER, Alexander ONIC, Christian SCHMID, Rainer STUHLBERGER
  • Publication number: 20190214724
    Abstract: A circuit is described herein. In accordance with one embodiment the circuit includes two or more RF channels, wherein each channel includes an input node, a phase shifter and an output node. Each channel is configured to receive an RF oscillator signal at the input node and to provide an RF output signal at the output node. The circuit further includes an RF combiner circuit that is coupled with the outputs of the RF channels and configured to generate a combined signal representing a combination of the RF output signals, and a monitor circuit that includes a mixer and is configured to receive and down-convert the combined signal using an RF reference signal. Thus a mixer output signal is generated that depends on the phases of the RF output signals.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 11, 2019
    Applicant: Infineon Technologies AG
    Inventors: Jochen O. SCHRATTENECKER, Niels CHRISTOFFERS, Vincenzo FIORE, Bernhard GSTOETTENBAUER, Helmut KOLLMANN, Alexander MELZER, Alexander ONIC, Rainer STUHLBERGER, Mathias ZINNOECKER
  • Publication number: 20190113600
    Abstract: A method for processing radar data is described herein. In accordance with one embodiment, the method includes the calculation of a Range Map based on a digital radar signal received from a radar receiver. The Range Map includes spectral values for a plurality of discrete frequency values and a plurality of discrete time values, wherein each spectral value is represented by at least a first parameter. Further, the method includes applying an operation to at least the first parameters in the Range Map for at least one discrete frequency value to smooth or analyze at least a portion of the Range Map.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 18, 2019
    Inventors: Alexander MELZER, Mario Huemer, Paul Meissner, Alexander Onic, Rainer Stuhlberger, Fisnik Sulejmani, Matthias Wagner
  • Publication number: 20180113193
    Abstract: A method for cancelling phase noise in a radar signal is described herein. In accordance with one embodiment, the method includes transmitting an RF oscillator signal, which represents a local oscillator signal including phase noise, to a radar channel and receiving a respective first RF radar signal from the radar channel. The first RF radar signal included at least one radar echo of the transmitted RF oscillator signal. Further, the method includes applying the RF oscillator signal to an artificial radar target composed of circuitry, which applies a delay and a gain to the RF oscillator signal, to generate a second RF radar signal. The second RF radar signal is modulated by a modulation signal thus generating a frequency-shifted RF radar signal. Further, the method includes subtracting the frequency-shifted RF radar signal from the first RF radar signal.
    Type: Application
    Filed: October 6, 2017
    Publication date: April 26, 2018
    Inventors: Mario HUEMER, Alexander MELZER, Alexander ONIC, Rainer STUHLBERGER
  • Publication number: 20180059216
    Abstract: A frequency-modulated continuous-wave (FMCW) radar sensor may include a receive chain, where the receive chain includes a plurality of elements associated with processing a radar signal, where at least one element, of the plurality of elements, is configurable independent of at least one other element of the plurality of elements.
    Type: Application
    Filed: August 26, 2016
    Publication date: March 1, 2018
    Inventors: Alexander ONIC, Christian Michael SCHMID
  • Publication number: 20170199270
    Abstract: Exemplary embodiments disclosed herein relate to a radar device. In accordance with one example of the present invention the radar device includes an RF transceiver configured to transmit an RF oscillator signal to a radar channel and receive a respective first RF radar signal from the radar channel. The radar device further includes an artificial radar target composed of circuitry that provides a gain and a delay to the RF oscillator signal to generate a second RF radar signal. A first frequency conversion circuit, which includes a first mixer, is configured to down-convert the first RF radar signal, and a second frequency conversion circuit, which includes a second mixer, is configured to down-convert the second RF radar signal. An analog-to digital conversion unit is configured to digitize the down-converted first RF radar signal and the down-converted second RF radar signal to generate a first digital signal and a second digital signal, respectively.
    Type: Application
    Filed: January 12, 2016
    Publication date: July 13, 2017
    Inventors: Mario Huemer, Alexander Melzer, Alexander Onic, Florian Starzer, Rainer Stuhlberger
  • Publication number: 20170153318
    Abstract: A method for estimating phase noise of an RF oscillator signal in a frequency-modulated continuous-wave (FMCW) radar system and related radar devices are provided. The method includes applying the RF oscillator signal to an artificial radar target composed of circuitry, which applies a delay and a gain to the RF oscillator signal, to generate an RF radar signal. Furthermore, the method includes down-converting the RF radar signal received from the artificial radar target from an RF frequency band to a base band, digitizing the down-converted RF radar signal to generate a digital radar signal, and calculating a decorrelated phase noise signal from the digital radar signal. A power spectral density of the decorrelated phase noise is then calculated from the decorrelated phase noise signal, and the power spectral density of the decorrelated phase noise is converted into a power spectral density of the phase noise of an RF oscillator signal.
    Type: Application
    Filed: November 22, 2016
    Publication date: June 1, 2017
    Applicant: Infineon Technologies AG
    Inventors: Alexander MELZER, Mario HUEMER, Alexander ONIC, Florian STARZER, Rainer STUHLBERGER