Patents by Inventor Alexander Slepoy

Alexander Slepoy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230261526
    Abstract: New systems for the wireless recharging of the batteries of game controllers, without the need for placing the game controller on a dedicated charging device such as an inductively coupled charging pad or its charging docking station. Wireless charging can continue even when the gaming controllers are being moved, when in use during the gaming session, and certainly when the controller is left by the user in some random location in the area in which the system is installed. A transmitter beams optical power, such as a laser beam, to an optical power receiver located on the controller itself, which, using a photovoltaic cell and an appropriate voltage converter, converts the optical beam power to a current for charging the battery. A beam aiming mechanism, such as a scanning mirror, is provided to ensure correct tracking of the game controller, according to the outputs of a beam tracking application.
    Type: Application
    Filed: February 15, 2023
    Publication date: August 17, 2023
    Inventors: Ori Rafael MOR, Zohar LEVIN, Alexander SLEPOY, Eli ZLATKIN, Nir SIMON
  • Patent number: 11547250
    Abstract: Exemplary dispensers that receive power from a wireless focused power signal and methods of charging such dispensers are disclosed herein. An exemplary dispenser for dispensing soap or sanitizer includes a housing, a receptacle for retaining a supply of soap or sanitizer, a processor, and a focused energy signal receiver. The focused energy signal receiver includes a reflector for reflecting at least a portion of the focused energy signal back to a transmission source and a converter for converting at least a portion of the focused energy signal into an output voltage. The dispenser further includes charge control circuitry and one or more capacitors. The charge control circuitry monitors the output voltage of the converter. If the output voltage of the converter is above a threshold, the one or more capacitors receive a charging current.
    Type: Grant
    Filed: March 3, 2022
    Date of Patent: January 10, 2023
    Assignee: GOJO Industries, Inc.
    Inventors: Jackson W. Wegelin, Chip W. Curtis, Mark T. Smith, Alexander Slepoy
  • Patent number: 11527919
    Abstract: A system for optical wireless power transmission to a power receiving apparatus generally situated in a mobile electronic device. The transmitter has an optical resonator with end reflectors and a gain medium positioned between them, such that an optical beam is generated. The frequency of the beam is selected such that it is absorbed by almost all transparent organic materials in general use. A beam steering unit on the transmitter can direct the beam in any of a plurality of directions, and the beam is absorbed on the receiver by means of an optical-to-electrical power converter, through a low reflection surface. The band gap of this power converter is selected to be smaller than that of the gain medium. The receiver has a voltage converter including an inductor, an energy storage device and a switch. A beam steerer controller ensures that the beam impinges on the receiver.
    Type: Grant
    Filed: February 10, 2022
    Date of Patent: December 13, 2022
    Assignee: Wi-Charge Ltd.
    Inventors: Alexander Slepoy, Ori Refael Mor, Ortal Alpert, Lior Golan, Omer Nahmias, Victor Vaisleib
  • Publication number: 20220360116
    Abstract: A wireless power transmitter system for directing a high energy beam towards receivers fitted with identifying signs. One type of the identifying signs may have asymmetric shape properties, such that their mirror image cannot be matched to their actual shape, even after the image is rotated, tilted or otherwise geometrically manipulated. The system can thus determine whether a detected image of a sign is a true image received directly from said receiver, or is received after the imaged beam has undergone a reflection between the receiver and the transmission system. In the latter case, the system can prevent high power transmission from being directed to a location other than a real receiver, which could be a safety hazard. Other types of identifying signs may be located in or on the borders of different zones of a transmission space, to identify zones where transmission may be allowed or prohibited.
    Type: Application
    Filed: May 16, 2022
    Publication date: November 10, 2022
    Applicant: Wi-Charge Ltd.
    Inventors: Yoav Biderman, Ortal Alpert, Ori Refael Mor, Omer Nahmias, Lior Golan, Ran Sagi, Zohar Levin, Alexander Slepoy, Yan Rosh, Eyal Conforti
  • Publication number: 20220311521
    Abstract: A system incorporating safety features, for optical power transmission to receivers, comprising an optical resonator having end reflectors and a gain medium, a driver supplying power to the gain medium, and controlling its small signal gain, a beam steering apparatus and a controller to control at least the beam steering apparatus and the driver. The controller responds to a safety risk occurring in the system, by outputting a command to change at least some of the small signal gain of the gain medium, the radiance of the optical beam, the power supplied by the driver, the scan speed or the scan direction and position of the beam steering apparatus, or to register the scan pose which defines the location of said optical-to-electrical power converter. The controller may also ensure a high overall radiance efficiency, and may warn of transmitted power not received by a targeted receiver.
    Type: Application
    Filed: June 3, 2022
    Publication date: September 29, 2022
    Applicant: Wi-Charge Ltd.
    Inventors: Lior GOLAN, Alexander SLEPOY, Omer NAHMIAS, Ran SAGI, Ortal ALPERT, Ori Refael MOR
  • Publication number: 20220263350
    Abstract: A safety supervision system for wireless power transmission, comprising a transmitter having an optical beam generator with safe states for transmitting power to receivers that convert the beam into electrical power. The system control unit stores previously known signatures categorized by predetermined parameters associated with one or more unwanted situations, stores data from sensors, compares this stored data to the signatures, and executes one or more responses based on this comparison. The system may comprise transmitter and/or receiver malfunction detection systems adapted to monitor the transmitter and receiver control units and to cause the optical beam generator to switch to a safe state upon detection of a transmitter or receiver control unit malfunction, and may further comprise a hazard detection system preventing human exposure to beam intensity above a predefined safe level.
    Type: Application
    Filed: April 26, 2022
    Publication date: August 18, 2022
    Applicant: Wi-Charge Ltd.
    Inventors: Ortal Alpert, Ran Sagi, Ori Refael Mor, Lior Golan, Yoav Biderman, Omer Nahmias, Alexander Slepoy, Zohar Levin, Eyal Conforti, Yan Rosh
  • Patent number: 11356183
    Abstract: A system incorporating safety features, for optical power transmission to receivers, comprising an optical resonator having end reflectors and a gain medium, a driver supplying power to the gain medium, and controlling its small signal gain, a beam steering apparatus and a controller to control at least the beam steering apparatus and the driver. The controller responds to a safety risk occurring in the system, by outputting a command to change at least some of the small signal gain of the gain medium, the radiance of the optical beam, the power supplied by the driver, the scan speed or the scan direction and position of the beam steering apparatus, or to register the scan pose which defines the location of said optical-to-electrical power converter. The controller may also ensure a high overall radiance efficiency, and may warn of transmitted power not received by a targeted receiver.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: June 7, 2022
    Assignee: Wi-Charge Ltd.
    Inventors: Lior Golan, Alexander Slepoy, Omer Nahmias, Ran Sagi, Ortal Alpert, Ori Refael Mor
  • Publication number: 20220173623
    Abstract: A system for optical wireless power transmission to a power receiving apparatus generally situated in a mobile electronic device. The transmitter has an optical resonator with end reflectors and a gain medium positioned between them, such that an optical beam is generated. The frequency of the beam is selected such that it is absorbed by almost all transparent organic materials in general use. A beam steering unit on the transmitter can direct the beam in any of a plurality of directions, and the beam is absorbed on the receiver by means of an optical-to-electrical power converter, through a low reflection surface. The band gap of this power converter is selected to be smaller than that of the gain medium. The receiver has a voltage converter including an inductor, an energy storage device and a switch. A beam steerer controller ensures that the beam impinges on the receiver.
    Type: Application
    Filed: February 10, 2022
    Publication date: June 2, 2022
    Applicant: Wi-Charge Ltd.
    Inventors: Alexander Slepoy, Ori Refael Mor, Ortal Alpert, Lior Golan, Omer Nahmias, Victor Vaisleib
  • Patent number: 11342797
    Abstract: A wireless power transmitter system for directing a high energy beam towards receivers fitted with identifying signs. One type of the identifying signs may have asymmetric shape properties, such that their mirror image cannot be matched to their actual shape, even after the image is rotated, tilted or otherwise geometrically manipulated. The system can thus determine whether a detected image of a sign is a true image received directly from said receiver, or is received after the imaged beam has undergone a reflection between the receiver and the transmission system. In the latter case, the system can prevent high power transmission from being directed to a location other than a real receiver, which could be a safety hazard. Other types of identifying signs may be located in or on the borders of different zones of a transmission space, to identify zones where transmission may be allowed or prohibited.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: May 24, 2022
    Assignee: Wi-Charge Ltd.
    Inventors: Yoav Biderman, Ortal Alpert, Ori Refael Mor, Omer Nahmias, Lior Golan, Ran Sagi, Zohar Levin, Alexander Slepoy, Yan Rosh, Eyal Conforti
  • Patent number: 11322991
    Abstract: A safety supervision system for wireless power transmission, comprising a transmitter having an optical beam generator with safe states for transmitting power to receivers that convert the beam into electrical power. The system control unit stores previously known signatures categorized by predetermined parameters associated with one or more unwanted situations, stores data from sensors, compares this stored data to the signatures, and executes one or more responses based on this comparison. The system may comprise transmitter and/or receiver malfunction detection systems adapted to monitor the transmitter and receiver control units and to cause the optical beam generator to switch to a safe state upon detection of a transmitter or receiver control unit malfunction, and may further comprise a hazard detection system preventing human exposure to beam intensity above a predefined safe level.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: May 3, 2022
    Assignee: Wi-Charge Ltd.
    Inventors: Ortal Alpert, Ran Sagi, Ori Refael Mor, Lior Golan, Yoav Biderman, Omer Nahmias, Alexander Slepoy, Zohar Levin, Eyal Conforti, Yan Rosh
  • Publication number: 20220123601
    Abstract: A system for ensuring the integrity of the enclosure of a wireless power transmitter. The enclosure of the transmitter comprises a window in order to allow a high-power beam to exit the transmitter. The window is equipped with an area which reflects at least a portion of the beam, and directs the reflected beam onto a detector. Thus the system can ascertain whether the window is undamaged, since if the detector is receiving a satisfactory portion of the beam, then it is indicative of an undamaged window. This advantageously prevents dangerous beam generated damage which may be caused if the exit window of the transmitter is damaged. The laser beam is preferably circularly polarized before exiting the transmitter to prevent dangerous laser damage caused by the reflections of the maximum of the P or S polarization components, which may occur with linearly polarized beams.
    Type: Application
    Filed: January 17, 2020
    Publication date: April 21, 2022
    Applicant: Wi-Charge Ltd.
    Inventors: Ortal Alpert, Yoav Biderman, Ori Mor, Omer Nahmias, Lior Golan, Ran Sagi, Zohar Levin, Alexander Slepoy, Yan Rosh, Eyal Conforti
  • Publication number: 20220103018
    Abstract: A system for optical wireless power transmission to a power receiving apparatus generally situated in a mobile electronic device. The transmitter has an optical resonator with end reflectors and a gain medium positioned between them, such that an optical beam is generated. The frequency of the beam is selected such that it is absorbed by almost all transparent organic materials in general use. A beam steering unit on the transmitter can direct the beam in any of a plurality of directions, and the beam is absorbed on the receiver by means of an optical-to-electrical power converter, through a low reflection surface. The band gap of this power converter is selected to be smaller than that of the gain medium. The receiver has a voltage converter including an inductor, an energy storage device and a switch. A beam steerer controller ensures that the beam impinges on the receiver.
    Type: Application
    Filed: December 13, 2021
    Publication date: March 31, 2022
    Applicant: Wi-Charge Ltd.
    Inventors: Ori Refael Mor, Ortal Alpert, Alexander Slepoy, Lior Golan, Ran Sagi, Vadim Shmukler, Eitan Ronen, Omer Nahmias, Victor Vaisleib
  • Patent number: 11201505
    Abstract: A system for optical wireless power transmission to a power receiving apparatus generally situated in a mobile electronic device. The transmitter has an optical resonator with end reflectors and a gain medium positioned between them, such that an optical beam is generated. The frequency of the beam is selected such that it is absorbed by almost all transparent organic materials in general use. A beam steering unit on the transmitter can direct the beam in any of a plurality of directions, and the beam is absorbed on the receiver by means of an optical-to-electrical power converter, through a low reflection surface. The band gap of this power converter is selected to be smaller than that of the gain medium. The receiver has a voltage converter including an inductor, an energy storage device and a switch. A beam steerer controller ensures that the beam impinges on the receiver.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: December 14, 2021
    Assignee: Wi-Charge Ltd.
    Inventors: Ori Refael Mor, Ortal Alpert, Alexander Slepoy, Lior Golan, Ran Sagi, Vadim Shmukler, Eitan Ronen, Omer Nahmias, Victor Vaisleib
  • Publication number: 20210384776
    Abstract: A system for transmitting wireless power from multiple sources to multiple receivers, in which the safety of the system is maintained in spite of the possibility that two beams may intersect in the transmission space, thereby generating power or power density levels which exceed those at which the safety mechanisms of the system were designed to operate. The paths of the beams are known from the transmission positions and directions, and from the positions and orientations of the receivers, as measured by positioning devices on them. When an intersection, or near intersection of beams is determined, the system is triggered to reduce the safety risk by attenuating or turning off, or by diverting, one or more of the beams. In addition, since a reflected beam's path may not be readily discernable, the system can ascertain if one of the beams has undergone a reflection, by looking for displayed mirror images.
    Type: Application
    Filed: August 13, 2021
    Publication date: December 9, 2021
    Applicant: Wi-Charge Ltd.
    Inventors: Yoav Biderman, Ortal Alpert, Omer Nahmias, Lior Golan, Ran Sagi, Zohar Levin, Ori Mor, Alexander Slepoy, Yan Rosh, Eyal Conforti
  • Patent number: 11095166
    Abstract: A system for transmitting wireless power from multiple sources to multiple receivers, in which the safety of the system is maintained in spite of the possibility that two beams may intersect in the transmission space, thereby generating power or power density levels which exceed those at which the safety mechanisms of the system were designed to operate. The paths of the beams are known from the transmission positions and directions, and from the positions and orientations of the receivers, as measured by positioning devices on them. When an intersection, or near intersection of beams is determined, the system is triggered to reduce the safety risk by attenuating or turning off, or by diverting, one or more of the beams. In addition, since a reflected beam's path may not be readily discernable, the system can ascertain if one of the beams has undergone a reflection, by looking for displayed mirror images.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: August 17, 2021
    Assignee: Wi-Charge Ltd.
    Inventors: Yoav Biderman, Ortal Alpert, Omer Nahmias, Lior Golan, Ran Sagi, Zohar Levin, Ori Mor, Alexander Slepoy, Yan Rosh, Eyal Conforti
  • Publication number: 20210167635
    Abstract: A wireless power transmitter system for directing a high energy beam towards receivers fitted with identifying signs. One type of the identifying signs may have asymmetric shape properties, such that their mirror image cannot be matched to their actual shape, even after the image is rotated, tilted or otherwise geometrically manipulated. The system can thus determine whether a detected image of a sign is a true image received directly from said receiver, or is received after the imaged beam has undergone a reflection between the receiver and the transmission system. In the latter case, the system can prevent high power transmission from being directed to a location other than a real receiver, which could be a safety hazard. Other types of identifying signs may be located in or on the borders of different zones of a transmission space, to identify zones where transmission may be allowed or prohibited.
    Type: Application
    Filed: May 23, 2019
    Publication date: June 3, 2021
    Applicant: Wi-Charge Ltd.
    Inventors: Yoav Biderman, Ortal Alpert, Ori Refael Mor, Omer Nahmias, Lior Golan, Ran Sagi, Zohar Levin, Alexander Slepoy, Yan Rosh, Eyal Conforti
  • Publication number: 20210091603
    Abstract: A safety supervision system for wireless power transmission, comprising a transmitter having an optical beam generator with safe states for transmitting power to receivers that convert the beam into electrical power. The system control unit stores previously known signatures categorized by predetermined parameters associated with one or more unwanted situations, stores data from sensors, compares this stored data to the signatures, and executes one or more responses based on this comparison. The system may comprise transmitter and/or receiver malfunction detection systems adapted to monitor the transmitter and receiver control units and to cause the optical beam generator to switch to a safe state upon detection of a transmitter or receiver control unit malfunction, and may further comprise a hazard detection system preventing human exposure to beam intensity above a predefined safe level.
    Type: Application
    Filed: May 15, 2018
    Publication date: March 25, 2021
    Inventors: Ortal Alpert, Ran Sagi, Ori Refael Mor, Lior Golan, Yoav Biderman, Omer Nahmias, Alexander Slepoy, Zohar Levin, Eyal Conforti, Yan Rosh
  • Publication number: 20210075269
    Abstract: A system for transmitting wireless power from multiple sources to multiple receivers, in which the safety of the system is maintained in spite of the possibility that two beams may intersect in the transmission space, thereby generating power or power density levels which exceed those at which the safety mechanisms of the system were designed to operate. The paths of the beams are known from the transmission positions and directions, and from the positions and orientations of the receivers, as measured by positioning devices on them. When an intersection, or near intersection of beams is determined, the system is triggered to reduce the safety risk by attenuating or turning off, or by diverting, one or more of the beams. In addition, since a reflected beam's path may not be readily discernable, the system can ascertain if one of the beams has undergone a reflection, by looking for displayed mirror images.
    Type: Application
    Filed: January 2, 2019
    Publication date: March 11, 2021
    Applicant: Wi-Charge Ltd.
    Inventors: Yoav Biderman, Ortal Alpert, Omer Nahmias, Lior Golan, Ran Sagi, Zohar Levin, Ori Mor, Alexander Slepoy, Yan Rosh, Eyal Conforti
  • Patent number: 10503227
    Abstract: Described is an apparatus which comprises: a first voltage regulator (VR) coupled to first one or more inductors, the first VR is to provide power to a first power domain; and a second VR coupled to second one or more inductors at least one of which is inductively coupled to at least one of the first one or more inductors, the second VR is to provide power to a second power domain separate from the first power domain, wherein there is a non-zero phase angle offset between switching transistors of the first VR relative to the second VR.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: December 10, 2019
    Assignee: Intel Corporation
    Inventors: Krishna Bharath, Srikrishnan Venkataraman, William J. Lambert, Michael J. Hill, Alexander Slepoy, Dong Zhong, Kaladhar Radhakrishnan, Hector A. Aguirre Diaz, Jonathan P. Douglas
  • Publication number: 20190341813
    Abstract: A system incorporating safety features, for optical power transmission to receivers, comprising an optical resonator having end reflectors and a gain medium, a driver supplying power to the gain medium, and controlling its small signal gain, a beam steering apparatus and a controller to control at least the beam steering apparatus and the driver. The controller responds to a safety risk occurring in the system, by outputting a command to change at least some of the small signal gain of the gain medium, the radiance of the optical beam, the power supplied by the driver, the scan speed or the scan direction and position of the beam steering apparatus, or to register the scan pose which defines the location of said optical-to-electrical power converter. The controller may also ensure a high overall radiance efficiency, and may warn of transmitted power not received by a targeted receiver.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 7, 2019
    Inventors: Alexander Slepoy, Lior Golan, Omer Nahmias, Ran Sagi, Ortal Alpert, Ori Refael Mor