Patents by Inventor Alexandr Ikriannikov

Alexandr Ikriannikov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120126888
    Abstract: A circuit includes a first input terminal for receiving a first pulsed voltage and a second input terminal for receiving a second pulsed voltage. The circuit further includes a load and an LC filter. The LC filter includes a coupled inductor pair that includes a first winding and a second winding magnetically coupled to each other. The first winding is coupled between the first input terminal and the load, and the second winding is coupled between the second input terminal and the load. A frequency of a first current flowing through the first winding is increased by the second pulsed voltage applied to the second winding.
    Type: Application
    Filed: January 5, 2012
    Publication date: May 24, 2012
    Inventors: Alexandr Ikriannikov, David Hoffman, Noah A. Wilson
  • Patent number: 8174348
    Abstract: Two-phase coupled inductors including a magnetic core, at least a first winding, and at least three solder tabs. Power supplies including a printed circuit board, a two-phase coupled inductor affixed to the printed circuit board, and first and second switching circuits affixed to the printed circuit board. Each of the first and second switching circuits are electrically coupled to a respective solder tab of the two-phase coupled inductor affixed to the printed circuit board.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: May 8, 2012
    Assignee: Volterra Semiconductor Corporation
    Inventor: Alexandr Ikriannikov
  • Publication number: 20120103672
    Abstract: An inductor includes a core formed of a magnetic material and a foil winding wound at least partially around or through at least a portion of the core. A first end of the winding extends away from the core to form an extended output tongue configured and arranged to supplement or serve as a substitute for a printed circuit board foil trace. A second end of the winding fauns a solder tab. At least a portion of the extended output tongue and the solder tab are formed at a same height relative to a bottom surface of the core. Another inductor includes a core formed of a magnetic material, a winding wound at least partially around or through at least a portion of the core, and a ground return conductor attached to the core. The core does not form a magnetic path loop around the ground return conductor.
    Type: Application
    Filed: January 6, 2012
    Publication date: May 3, 2012
    Inventor: Alexandr Ikriannikov
  • Publication number: 20120062207
    Abstract: A multi-phase coupled inductor includes a powder core material magnetic core and first, second, third, and fourth terminals. The coupled inductor further includes a first winding at least partially embedded in the core and a second winding at least partially embedded in the core. The first winding is electrically coupled between the first and second terminals, and the second winding electrically is coupled between the third and fourth terminals. The second winding is at least partially physically separated from the first winding within the magnetic core. The multi-phase coupled inductor is, for example, used in a power supply.
    Type: Application
    Filed: November 22, 2011
    Publication date: March 15, 2012
    Inventor: Alexandr Ikriannikov
  • Publication number: 20120056703
    Abstract: An inductor includes a core formed of a magnetic material and a foil winding wound at least partially around or through at least a portion of the core. A first end of the winding extends away from the core to form an extended output tongue configured and arranged to supplement or serve as a substitute for a printed circuit board foil trace. A second end of the winding forms a solder tab. At least a portion of the extended output tongue and the solder tab are formed at a same height relative to a bottom surface of the core. Another inductor includes a core formed of a magnetic material, a winding wound at least partially around or through at least a portion of the core, and a ground return conductor attached to the core. The core does not form a magnetic path loop around the ground return conductor.
    Type: Application
    Filed: November 15, 2011
    Publication date: March 8, 2012
    Inventor: Alexandr Ikriannikov
  • Publication number: 20120044014
    Abstract: An integrated circuit chip includes a first input port, a first output port, and first and second transistors electrically coupled in series across the first input port. The second transistor is also electrically coupled across the first output port and is adapted to provide a path for current flowing through the first output port when the first transistor is in its non-conductive state. The integrated circuit chip additionally includes first driver circuitry for driving gates of the first and second transistors to cause the transistors to switch between their conductive and non-conductive states. The integrated circuit chip further includes first controller circuitry for controlling the first driver circuitry such that the first and second transistors switch between their conductive and non-conductive states to at least substantially maximize an amount of electric power extracted from an electric power source electrically coupled to the first input port.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 23, 2012
    Applicant: VOLTERRA SEMICONDUCTOR CORPORATION
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Alexandr Ikriannikov, Artin Der Minassians, Kaiwei Yao, David B. Lidsky, Marco A. Zuniga, Ana Borisavljevic
  • Publication number: 20120043923
    Abstract: An energy transfer device for solar power systems operates to draw power from high-producing photovoltaic devices and apply that power across low-producing photovoltaic devices. An embodiment is a self-regulating energy exchanger using bidirectional DC-DC converters that operates to maintain uniform voltage across each series-connected photovoltaic device. An alternative embodiment is an energy exchanger that is controlled to maintain each of several series-connected photovoltaic devices at a maximum power point by drawing power from high-performing devices and applying that power across low-performing devices to provide uniform current among series-connected photovoltaic devices.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 23, 2012
    Inventors: Alexandr Ikriannikov, Anthony J. Stratakos
  • Publication number: 20120043818
    Abstract: An electric power system includes N electric power sources and N switching circuits, where N in an integer greater than one. Each switching circuit includes an input port electrically coupled to a respective one of the N electric power sources, an output port, and a first switching device adapted to switch between its conductive and non-conductive states to transfer power from the input port to the output port. The output ports of the N switching circuits are electrically coupled in series and to a load to establish an output circuit. Each of the N switching circuits uses an interconnection inductance of the output circuit as a primary energy storage inductance of the switching circuit.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 23, 2012
    Applicant: VOLTERRA SEMICONDUCTOR CORPORATION
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Alexandr Ikriannikov, Artin Der Minassians, Kaiwei Yao, David B. Lidsky, Marco A. Zuniga, Ana Borisavljevic
  • Publication number: 20120043823
    Abstract: A switching circuit for extracting power from an electric power source includes (1) an input port for electrically coupling to the electric power source, (2) an output port for electrically coupling to a load, (3) a first switching device configured to switch between its conductive state and its non-conductive state to transfer power from the input port to the output port, (4) an intermediate switching node that transitions between at least two different voltage levels at least in part due to the first switching device switching between its conductive state and its non-conductive state, and (5) a controller for controlling the first switching device to maximize an average value of a voltage at the intermediate switching node.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 23, 2012
    Applicant: VOLTERRA SEMICONDUCTOR CORPORATION
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Alexandr Ikriannikov, Artin Der Minassians, Kaiwei Yao, David B. Lidsky, Marco A. Zuniga, Ana Borisavljevic
  • Patent number: 8115366
    Abstract: A transducer is optimally driven at or near its resonant frequency by a driver system that adapts to variations and/or changes to the resonant frequency of the transducer due to variations in piezo materials, manufacturing, assembly, component tolerances, and/or operational conditions. The system may include an output controller, a phase track controller, a frequency generator, a drive, circuitry to determine a phase angle between the transducer voltage and transducer current, and circuitry to obtain transducer admittance from the transducer voltage and transducer current.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: February 14, 2012
    Assignee: Versatile Power, Inc.
    Inventors: David Hoffman, David Brubaker, Alexandr Ikriannikov
  • Publication number: 20120026706
    Abstract: A multi-winding inductor includes a first foil winding and a second foil winding. One end of the first foil winding extends from a first side of the core and wraps under the core to form a solder tab under the core. One end of the second foil winding extends from a second side of the core and wraps under the core to form another solder tab under the core. Respective portions of each solder tab are laterally adjacent under the magnetic core. A coupled inductor includes a magnetic core including a first and a second end magnetic element and a plurality of connecting magnetic elements disposed between and connecting the first and second end magnetic elements. A respective first and second single turn foil winding is wound at least partially around each connecting magnetic element. Each foil winding has two ends forming respective solder tabs.
    Type: Application
    Filed: October 7, 2011
    Publication date: February 2, 2012
    Inventor: Alexandr Ikriannikov
  • Patent number: 8102233
    Abstract: An M-winding coupled inductor includes a first end magnetic element, a second end magnetic element, M connecting magnetic elements, and M windings. M is an integer greater than one. Each connecting magnetic element is disposed between and connects the first and second end magnetic elements. Each winding is wound at least partially around a respective one of the M connecting magnetic elements, and each winding has a respective leakage inductance. The coupled inductor further includes at least one top magnetic element adjacent to and extending at least partially over at least two of the M connecting magnetic elements to provide a magnetic flux path between the first and second end magnetic elements. The top magnetic element forms a gap. The inductor may be included in an M-phase power supply, and the power supply may at least partially power a computer processor.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: January 24, 2012
    Assignee: Volterra Semiconductor Corporation
    Inventor: Alexandr Ikriannikov
  • Patent number: 8068355
    Abstract: A multiphase DC-to-DC power converter has two or more sets of input switches, each set of input switches driving primary windings of at least one associated transformer. Each transformer has one or two secondary windings, the secondary windings feeding power through output switches or rectifiers through an associated output inductor into a common filter. At least two of the output inductors are magnetically coupled.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: November 29, 2011
    Assignee: Volterra Semiconductor Corporation
    Inventors: Alexandr Ikriannikov, Ognjen Djekic
  • Publication number: 20110286144
    Abstract: A multi-phase coupled inductor includes a powder core material magnetic core and first, second, third, and fourth terminals. The coupled inductor further includes a first winding at least partially embedded in the core and a second winding at least partially embedded in the core. The first winding is electrically coupled between the first and second terminals, and the second winding electrically is coupled between the third and fourth terminals. The second winding is at least partially physically separated from the first winding within the magnetic core. The multi-phase coupled inductor is, for example, used in a power supply.
    Type: Application
    Filed: February 9, 2011
    Publication date: November 24, 2011
    Inventor: Alexandr Ikriannikov
  • Publication number: 20110286143
    Abstract: A multi-phase coupled inductor includes a magnetic core formed of a powder magnetic material and first, second, third, and fourth terminals. The coupled inductor further includes a first winding forming at least one turn and at least partially embedded in the core and a second winding forming at least one turn and at least partially embedded in the core. The first winding is electrically coupled between the first and second terminals, and the second winding electrically is coupled between the third and fourth terminals. The second winding is at least partially physically separated from the first winding within the magnetic core. The multi-phase coupled inductor is, for example, used in a power supply.
    Type: Application
    Filed: May 24, 2010
    Publication date: November 24, 2011
    Inventor: Alexandr Ikriannikov
  • Publication number: 20110279100
    Abstract: A multi-phase coupled inductor includes a powder core material magnetic core and first, second, third, and fourth terminals. The coupled inductor further includes a first winding at least partially embedded in the core and a second winding at least partially embedded in the core. The first winding is electrically coupled between the first and second terminals, and the second winding electrically is coupled between the third and fourth terminals. The second winding is at least partially physically separated from the first winding within the magnetic core. The multi-phase coupled inductor is, for example, used in a power supply.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 17, 2011
    Applicant: VOLTERRA SEMICONDUCTOR CORPORATION
    Inventor: Alexandr Ikriannikov
  • Publication number: 20110279212
    Abstract: An M phase coupled inductor includes a magnetic core including a first end magnetic element, a second end magnetic element, and M legs disposed between and connecting the first and second end magnetic elements. M is an integer greater than one. The coupled inductor further includes M windings, where each winding has a substantially rectangular cross section. Each one of the M windings is at least partially wound about a respective leg.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 17, 2011
    Inventors: Alexandr Ikriannikov, Anthony Stratakos, Charles R. Sullivan, Aaron M. Schultz, Jieli Li
  • Publication number: 20110260822
    Abstract: A multi-winding inductor includes a first foil winding and a second foil winding. One end of the first foil winding extends from a first side of the core and wraps under the core to form a solder tab under the core. One end of the second foil winding extends from a second side of the core and wraps under the core to form another solder tab under the core. Respective portions of each solder tab are laterally adjacent under the magnetic core. A coupled inductor includes a magnetic core including a first and a second end magnetic element and a plurality of connecting magnetic elements disposed between and connecting the first and second end magnetic elements. A respective first and second single turn foil winding is wound at least partially around each connecting magnetic element. Each foil winding has two ends forming respective solder tabs.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Inventor: Alexandr Ikriannikov
  • Patent number: 8040212
    Abstract: An inductor includes a core formed of a magnetic material and a foil winding wound at least partially around or through at least a portion of the core. A first end of the winding extends away from the core to form an extended output tongue configured and arranged to supplement or serve as a substitute for a printed circuit board foil trace. A second end of the winding forms a solder tab. At least a portion of the extended output tongue and the solder tab are formed at a same height relative to a bottom surface of the core. Another inductor includes a core formed of a magnetic material, a winding wound at least partially around or through at least a portion of the core, and a ground return conductor attached to the core. The core does not form a magnetic path loop around the ground return conductor.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: October 18, 2011
    Assignee: Volterra Semiconductor Corporation
    Inventor: Alexandr Ikriannikov
  • Patent number: 7994888
    Abstract: A multi-winding inductor includes a first foil winding and a second foil winding. One end of the first foil winding extends from a first side of the core and wraps under the core to form a solder tab under the core. One end of the second foil winding extends from a second side of the core and wraps under the core to form another solder tab under the core. Respective portions of each solder tab are laterally adjacent under the magnetic core. A coupled inductor includes a magnetic core including a first and a second end magnetic element and a plurality of connecting magnetic elements disposed between and connecting the first and second end magnetic elements. A respective first and second single turn foil winding is wound at least partially around each connecting magnetic element. Each foil winding has two ends forming respective solder tabs.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: August 9, 2011
    Assignee: Volterra Semiconductor Corporation
    Inventor: Alexandr Ikriannikov