Patents by Inventor Alexandre M. Mayolet

Alexandre M. Mayolet has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7306673
    Abstract: The invention is directed to a method for growing metal fluoride crystals suitable for use in below 200 nm optical lithography systems, the method comprising including at least the step of heating a crystal growth furnace to a temperature in the range of 1400-2000° C. to purify the furnace by removal of sulfur and chlorine prior to using the furnace for growing metal fluoride single crystals.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: December 11, 2007
    Assignee: Corning Incorporated
    Inventors: Michelle M. L. Fredholm, Jeffrey T. Kohli, Nicholas LeBlond, Alexandre M. Mayolet, Viktoria Pshenitsyna, Pawan Saxena, Paul M. Schermerhorn
  • Patent number: 7204942
    Abstract: The method of making a high quality fluoride crystalline optical microlithography lens element blank includes crystallizing a fluoride crystalline member with dimension ?200 mm from a melt, annealing the fluoride crystalline member and qualifying the resulting member for use as an optical microlithography lens element blank The fluoride crystalline optical lithography lens element blanks have multiple adjoining abutting crystalline subgrains with low boundary angles. The crystalline members made by the method are qualified for use as lens element blanks by a testing method including measuring their absorption spectra at 200 to 220 nm to determine absorbance at 205 nm and/or by making measurements of radiation diffracted by them.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: April 17, 2007
    Assignee: Schott AG
    Inventors: Alexandre M. Mayolet, Michael A. Pell
  • Patent number: 6894284
    Abstract: This invention provides a method of detecting sub-ppm lead impurity levels in a below 200 nm transmitting optical calcium flouride crystal. The method includes providing a below 200 nm wavelength transmitting optical flouride crystal having a crystal light transmission path length, providing a 200-210 nm spectrophotometer having a light source for producing a transmission test wavelength in the range 200 to 210 nm and a transmission detector for measuring transmission of the test wavelength, and transmitting the transmission test wavelength in the range of 200 to 210 nm through the below 200 nm wavelength transmitting optical flouride light transmission path length and measuring the transmission of the 200 to 210 nm test wavelength through the path length to provide a lead ppb impurity level measurement less than 500 ppb. The invention provides for improved manufacturing of below 200 nm wavelength optical elements and optical fluoride crystals such as ultralow lead contaminated calcium flouride.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: May 17, 2005
    Assignee: Corning Incorporated
    Inventors: Alexandre M. Mayolet, Michael A. Pell, Nikolay T. Timofeev
  • Patent number: 6838681
    Abstract: The invention provides a method of detecting sub-ppm lead impurity levels in a below 200 nm transmitting optical calcium fluoride crystal. The method includes providing a below 200 nm wavelength transmitting optical calcium fluoride crystal, providing a fluorescence spectrometer having a light source for producing a 200 to 210 nm selectable wavelength incident radiation and a detector for detecting excited luminescence light in the wavelength range of 210-260 nm produced by the incident radiation, exciting a first luminescence area of the crystal with the 200 to 210 nm selectable wavelength incident radiation and detecting with the detector excited 210 to 260 luminescence light produced from the crystal luminescence area by the 200 to 210 incident radiation to provide a lead ppb impurity level measurement less than 100 ppb. The invention provides for improved manufacturing of below 200 nm wavelength optical elements and optical fluoride crystals such as ultralow lead contaminated calcium fluoride.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: January 4, 2005
    Assignee: Corning Incorporated
    Inventors: Alexandre M. Mayolet, Nikolay T. Timofeev
  • Patent number: 6802901
    Abstract: The present invention relates to the manufacturing of high purity optical flouride crystals, the making of purified optical flouride crystal feedstocks and to the anionic purification of optical fluoride crystalline materials. The invention relates generally to methods for removing oxide impurities from optical fluoride crystal feedstocks. More specifically, the invention relates to a method for preparing purified optical fluoride crystal feedstocks and the use of the feedstock in manufacturing VUV<200 nm transmission optical fluoride crystals for VUV lithography/laser systems.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: October 12, 2004
    Assignee: Corning Incorporated
    Inventors: Alain Kerdoncuff, Alexandre M. Mayolet
  • Patent number: 6773501
    Abstract: The optical fluoride crystal treatment device of the invention includes a enclosure (12) separating the device from its external environment, heating means to heat and keep the internal volume (16) of said enclosure (12) at a predetermined temperature, at least one hollow platform (20) delimiting an internal chamber (22) whose upper wall (24) bears at least two independent diffusers (30) each delimiting a cavity (32) able to receive a unitary quantity (100) of said optical fluoride crystal substance, each of said cavities (32) communicating with said internal chamber (22) of the corresponding platform (20), a gas supply source containing said reactive gas, and means (50, 52, 54) for distributing said gas containing said reactive gas from said supply source to the inside of the internal chamber of each platform and having means (44) for regulating the pressure of said distributed gas.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: August 10, 2004
    Assignee: Corning Incorporated
    Inventors: Alain Kerdoncuff, Alexandre M. Mayolet
  • Publication number: 20040115485
    Abstract: The invention provides a high quality identifiable fluoride crystalline optical microlithography lens element blank for formation into an lens element of a microlithography system. The highly qualified fluoride crystalline characteristics of the fluoride optical lithography lens blank ensure its beneficial performance in the demanding microlithography manufacturing regime which utilizes high energy short wavelength ultraviolet laser sources. The fluoride crystalline optical lithography lens element blanks are comprised of multiple adjoining abutting crystalline subgrains with low boundary angles.
    Type: Application
    Filed: November 25, 2003
    Publication date: June 17, 2004
    Inventors: Alexandre M. Mayolet, Michael A. Pell
  • Patent number: 6726766
    Abstract: The present invention is directed to polycrystalline alkali metal or alkaline earth metal beads, in particular CaF2 beads, having a diameter greater than or equal to 100 &mgr;m, advantageously between 100 &mgr;m and 2 cm, and an apparent density greater than 60%, advantageously at least 90%, of the theoretical density of said fluoride. The invention is also directed to a process for the preparation of the foregoing alkali metal and alkaline earth fluoride beads, and for the preparation of single crystals of said fluorides using the foregoing polycrystalline beads.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: April 27, 2004
    Inventors: Alexandre M. Mayolet, Michael A. Pell
  • Patent number: 6699408
    Abstract: Method of making a high quality identifiable fluoride crystalline optical microlithography lens element blank for formation into an lens element of a microlithography system. The highly qualified fluoride crystalline characteristics of the fluoride optical lithography lens blank ensure its beneficial performance in the demanding microlithography manufacturing regime which utilizes high energy short wavelength ultraviolet laser sources. The fluoride crystalline optical lithography lens element blanks are comprised of multiple adjoining abutting crystalline subgrains with low boundary angles.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: March 2, 2004
    Assignee: Corning Incorporated
    Inventors: Alexandre M. Mayolet, Michael A. Pell
  • Publication number: 20040026631
    Abstract: The invention provides a method of detecting sub-ppm lead impurity levels in a below 200 nm transmitting optical calcium fluoride crystal. The method includes providing a below 200 nm wavelength transmitting optical calcium fluoride crystal providing a fluorescence spectrometer having a light source for producing a 200 to 210 nm selectable wavelength incident radiation and a detector for detecting excited luminescence light in the wavelength range of 210-260 nm produced by the incident radiation, exciting a first luminescence area of the crystal with the 200 to 210 nm selectable wavelength incident radiation and detecting with the detector excited 210 to 260 luminescence light produced from the crystal luminescence area by the 200 to 210 incident radiation to provide a lead ppb impurity level measurement less than 100 ppb. The invention provides for improved manufacturing of below 200 nm wavelength optical elements and optical fluoride crystals such as ultralow lead contaminated calcium fluoride.
    Type: Application
    Filed: December 11, 2002
    Publication date: February 12, 2004
    Inventors: Alexandre M. Mayolet, Nikolay T. Timofeev
  • Publication number: 20030160177
    Abstract: This invention provides a method of detecting sub-ppm lead impurity levels in a below 200 nm transmitting optical calcium flouride crystal. The method includes providing a below 200 nm wavelength transmitting optical flouride crystal having a crystal light transmission path length, providing a 200-210 nm spectrophotometer having a light source for producing a transmission test wavelength in the range 200 to 210 nm and a transmission detector for measuring transmission of the test wavelength, and transmitting the transmission test wavelength in the range of 200 to 210 nm through the below 200 nm wavelength transmitting optical flouride light transmission path length and measuring the transmission of the 200 to 210 nm test wavelength through the path length to provide a lead ppb impurity level measurement less than 500 ppb. The invention provides for improved manufacturing of below 200 nm wavelength optical elements and optical fluoride crystals such as ultralow lead contaminated calcium flouride.
    Type: Application
    Filed: December 11, 2002
    Publication date: August 28, 2003
    Inventors: Alexandre M. Mayolet, Michael A. Pell, Nikolay T. Timofeev
  • Patent number: 6589895
    Abstract: A Tm-doped germanate glass composition comprises GeO2 having a concentration of at least 20 mole percent, Tm2O3 having a concentration of about 0.001 mole percent to about 2 mole percent, and Ga2O3, having a concentration of about 2 mole percent to about 40 mole percent. The composition can further include an alkaline earth metal compound selected from the group consisting of MgO, CaO, SrO, BaO, BaF2, MgF2, CaF2, SrF2, BaCl2, MgCl2, CaCl2, SrCl2, BaBr2, MgBr2, CaBr2, SrBr2, and combinations thereof, and having a non-zero concentration of less than about 40 mole percent. The composition can further include an alkali metal compound selected from the group consisting of Li2O, Na2O, K2O, Rb2O, Cs2O, Li2F2, Na2F2, K2F2, Rb2F2, Cs2F2, Li2Cl2, Na2Cl2, K2Cl2, Rb2Cl2, Cs2Cl2, Li2Br2, Na2Br2, K2Br2, Rb2Br2, Cs2Br2 and combinations thereof, and having a non-zero concentration of less than about 20 mole percent.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: July 8, 2003
    Assignee: Corning Incorporated
    Inventors: Matthew J. Dejneka, Jean-Philippe de Sandro, Alexandre M. Mayolet, Bryce N. Samson, Ji Wang
  • Publication number: 20030089304
    Abstract: The present invention relates to the manufacturing of high purity optical flouride crystals, the making of purified optical flouride crystal feedstocks and to the anionic purification of optical fluoride crystalline materials. The invention relates generally to methods for removing oxide impurities from optical fluoride crystal feedstocks. More specifically, the invention relates to a method for preparing purified optical fluoride crystal feedstocks and the use of the feedstock in manufacturing VUV<200 nm transmission optical fluoride crystals for VUV lithography/laser systems.
    Type: Application
    Filed: July 18, 2002
    Publication date: May 15, 2003
    Inventors: Alain Kerdoncuff, Alexandre M. Mayolet
  • Publication number: 20030087743
    Abstract: A Tm-doped germanate glass composition comprises GeO2 having a concentration of at least 20 mole percent, Tm2O3 having a concentration of about 0.001 mole percent to about 2 mole percent, and Ga2O3, having a concentration of about 2 mole percent to about 40 mole percent. The composition can further include an alkaline earth metal compound selected from the group consisting of MgO, CaO, SrO, BaO, BaF2, MgF2, CaF2, SrF2, BaCl2, MgCl2, CaCl2, SrCl2, BaBr2, MgBr2, CaBr2, SrBr2, and combinations thereof, and having a non-zero concentration of less than about 40 mole percent. The composition can further include an alkali metal compound selected from the group consisting of Li2O, Na2O, K2O, Rb2O, Cs2O, Li2F2, Na2F2, K2F2, Rb2F2, Cs2F2, Li2Cl2, Na2Cl2, K2Cl2, Rb2Cl2, Cs2Cl2, Li2Br2, Na2Br2, K2Br2, Rb2Br2, Cs2Br2 and combinations thereof, and having a non-zero concentration of less than about 20 mole percent.
    Type: Application
    Filed: June 29, 2001
    Publication date: May 8, 2003
    Inventors: Matthew J. Dejneka, Jean-Philippe de Sandro, Alexandre M. Mayolet, Bryce N. Samson, Ji Wang
  • Publication number: 20030070606
    Abstract: A method for making a below 200-nm wavelength optical fluoride crystal feedstock includes loading a fluoride raw material into a chamber, exposing the fluoride raw material to a flow of gaseous fluoride at a predetermined temperature, and storing the exposed fluoride raw material in a dry atmosphere.
    Type: Application
    Filed: October 1, 2002
    Publication date: April 17, 2003
    Inventors: Nicolas LeBlond, Alexandre M. Mayolet, Michael A. Pell, Joseph M. Whalen
  • Publication number: 20030044651
    Abstract: The optical fluoride crystal treatment device of the invention includes a enclosure (12) separating the device from its external environment, heating means to heat and keep the internal volume (16) of said enclosure (12) at a predetermined temperature, at least one hollow platform (20) delimiting an internal chamber (22) whose upper wall (24) bears at least two independent diffusers (30) each delimiting a cavity (32) able to receive a unitary quantity (100) of said optical fluoride crystal substance, each of said cavities (32) communicating with said internal chamber (22) of the corresponding platform (20), a gas supply source containing said reactive gas, and means (50, 52, 54) for distributing said gas containing said reactive gas from said supply source to the inside of the internal chamber of each platform and having means (44) for regulating the pressure of said distributed gas.
    Type: Application
    Filed: August 26, 2002
    Publication date: March 6, 2003
    Inventors: Alain Kerdoncuff, Alexandre M. Mayolet
  • Patent number: 6503860
    Abstract: According to one aspect of the present invention an optically active glass contains Sb2O3, up to about 4 mole % of an oxide of a rare earth element, and 0-20 mole % of a metal halide selected from the group consisting of a metal fluoride, a metal bromide, a metal chloride, and mixtures thereof, wherein this metal is a trivalent metal, a divalent metal, a monovalent metal, and mixtures thereof. In addition, any of the glass compositions described herein may contain up to 15 mole % B2O3 substituted for an equivalent amount of Sb2O3.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: January 7, 2003
    Assignee: Corning Incorporated
    Inventors: James E. Dickinson, Adam J. G. Ellison, Alexandre M. Mayolet, Michel Prassas
  • Publication number: 20030000456
    Abstract: The present invention has the following objectives:
    Type: Application
    Filed: August 22, 2002
    Publication date: January 2, 2003
    Inventors: Alexandre M. Mayolet, Michael A. Pell
  • Publication number: 20020132719
    Abstract: The invention provides a high quality identifiable fluoride crystalline optical microlithography lens element blank for formation into an lens element of a microlithography system. The highly qualified fluoride crystalline characteristics of the fluoride optical lithography lens blank ensure its beneficial performance in the demanding microlithography manufacturing regime which utilizes high energy short wavelength ultraviolet laser sources. The fluoride crystalline optical lithography lens element blanks are comprised of multiple adjoining abutting crystalline subgrains with low boundary angles.
    Type: Application
    Filed: April 11, 2002
    Publication date: September 19, 2002
    Inventors: Alexandre M. Mayolet, Michael A. Pell
  • Patent number: 6451106
    Abstract: A polycrystalline alkali-metal or alkaline-earth metal (more particularly CaF2) fluorides, produced in an original form, namely in the form of beads; said beads having a diameter or equivalent diameter greater than or equal to 100 um, advantageously between 100 um and 2 cm and an apparent density greater than or equal to 60%, advantageously at least 90% of the theoretical density of said fluoride. A process for the preparation of single crystals of the corresponding alkali-metal or alkaline-earth metal fluorides that uses polycrystalline fluorides in the aforementioned original form.
    Type: Grant
    Filed: October 4, 2000
    Date of Patent: September 17, 2002
    Assignee: Corning Incorporated
    Inventors: Alexandre M. Mayolet, Michael A. Pell