Patents by Inventor Alexandru Daniel Tatomirescu

Alexandru Daniel Tatomirescu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10498030
    Abstract: Cellular antennas having a mutual coupling can be isolated by the generation of an additional current path along a ground plane. A first antenna element can resonate at a resonance that interferes with and is mutually coupled to a second antenna element operating in a same frequency range, such as a low band frequency range. One or more parasitic scattering elements can generate the additional current path between the two antennas and isolate the two antennas from one another. A parasitic scattering element can comprise two capacitors that alter a radiation pattern of one of the antennas and decrease a correlation between both antennas.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: December 3, 2019
    Assignee: Intel IP Corporation
    Inventors: Alexandru Daniel Tatomirescu, Simon Stanev, Emil Buskgaard, Gert F. Pedersen, Pevand Bahramzy, Simon Svendsen, Boyan Yanakiev, Ole Jagielski
  • Patent number: 10205244
    Abstract: Described herein are architectures, platforms and methods for electrically tuning radiators in a portable device. The electrical tuning implements platform independent radiating elements or antennas in a portable device.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: February 12, 2019
    Assignee: Intel IP Corporation
    Inventors: Alexandru Daniel Tatomirescu, Poul Olesen, Peter Bundgaard, Pevand Bahramzy, Mikael Bergholz Knudsen, Gert Perdersen, Emil Buskgaard, Mauro Pelosi, Samantha Caporal Del Barrio
  • Patent number: 10109914
    Abstract: Antenna systems that can include first and second radiators and an electromagnetic coupler disposed adjacent to the first and the second radiators. The radiators can be tunable to one or more frequencies. The electromagnetic coupler can be, for example, an inductive coupler or a capacitive coupler. One or more of the antenna systems can be configured to use carrier aggregation by tuning the first and/or the second radiators. For example, one or more of the antenna systems can be configured to use inter-band aggregation, intra-band contiguous aggregation, and intra-band non-contiguous aggregation.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: October 23, 2018
    Assignee: Intel IP Corporation
    Inventors: Samantha Caporal Del Barrio, Pevand Bahramzy, Poul Olesen, Peter Bundgaard, Alexandru Daniel Tatomirescu, Emil Buskgaard, Gert F. Pedersen, Ole Jagielski, Simon Svendsen, Boyan Yanakiev
  • Publication number: 20170373393
    Abstract: Cellular antennas having a mutual coupling can be isolated by the generation of an additional current path along a ground plane. A first antenna element can resonate at a resonance that interferes with and is mutually coupled to a second antenna element operating in a same frequency range, such as a low band frequency range. One or more parasitic scattering elements can generate the additional current path between the two antennas and isolate the two antennas from one another. A parasitic scattering element can comprise two capacitors that alter a radiation pattern of one of the antennas and decrease a correlation between both antennas.
    Type: Application
    Filed: June 27, 2016
    Publication date: December 28, 2017
    Inventors: Alexandru Daniel Tatomirescu, Simon Stanev, Emil Buskgaard, Gert F. Pedersen, Pevand Bahramzy, Simon Svendsen, Boyan Yanakiev, Ole Jagielski
  • Patent number: 9781612
    Abstract: Representative implementations of devices and techniques provide self-interference suppression for a transceiver of a wireless communication system. To minimize interference from a transmit signal appearing on a receive path of the system, a cross-correlation is minimized between the transmit signal and a desired receive signal.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: October 3, 2017
    Assignee: Intel IP Corporation
    Inventors: Emil Buskgaard, Elpiniki Tsakalaki, Osama Nafeth Alrabadi, Mikael Bergholz Knudsen, Gert Pedersen, Alexandru Daniel Tatomirescu, Poul Olesen, Peter Bundgaard, Pevand Bahramzy
  • Patent number: 9570796
    Abstract: An antenna having a plurality of ports coupled to at least one radiator opening or protuberance formed on a metallic surface. A plurality of modulators are coupled to the plurality of respective ports and configured to modulate phase or amplitude of a plurality of signals radiated at the plurality of respective ports. A combiner is configured to combine the modulated signals to substantially cancel power reflected from the plurality of respective ports, wherein the plurality of respective ports are functionally aggregated into a single port.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: February 14, 2017
    Assignee: Intel IP Corporation
    Inventors: Osama Nafeth Alrabadi, Alexandru Daniel Tatomirescu, Mikael Bergholz Knudsen, Gert F. Pedersen, Poul Olesen, Peter Bundgaard
  • Patent number: 9537210
    Abstract: An apparatus and method to provide isolation between a first antenna and a second antenna, each of which is located on a ground plane. A slot that is tunable by a variable reactance is located on the ground plane, the slot not being appreciably resonant at the operating frequency of the first antenna and the second antenna. The antennas operate in an orthogonal mode. Varying the slot reactance varies the electrical distance over which the coupling current between the two antennas flows. Increased RF isolation to a desired magnitude results by maintaining the orthogonality at desired bands. The RF isolation can be measured and a departure from the desired magnitude of isolation causes the reactance to be varied to increase the RF isolation back to the desired magnitude. The antennas and the slot are placed at locations on the ground plane of high current density.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: January 3, 2017
    Assignee: Intel IP Corporation
    Inventors: Alexandru Daniel Tatomirescu, Poul Olesen, Gert Pedersen, Emil Buskgaard, Samantha Caporal Del Barrio, Pevand Bahramzy, Peter Bundgaard, Simon Svendsen, Ole Jagielski, Boyan Yanakiev
  • Publication number: 20160373939
    Abstract: Representative implementations of devices and techniques provide self-interference suppression for a transceiver of a wireless communication system. To minimize interference from a transmit signal appearing on a receive path of the system, a cross-correlation is minimized between the transmit signal and a desired receive signal.
    Type: Application
    Filed: March 31, 2014
    Publication date: December 22, 2016
    Inventors: EMIL BUSKGAARD, MIKAEL KNUDSEN, GERT PEDERSEN, ALEXANDRU DANIEL TATOMIRESCU, POUL OLESEN, PETER BUNDGAARD, OSAMA NAFETH ALRABADI, PEVAND BAHRAMZY, ELPINIKI TSAKALAKI
  • Publication number: 20160285160
    Abstract: An apparatus and method to provide isolation between a first antenna and a second antenna, each of which is located on a ground plane. A slot that is tunable by a variable reactance is located on the ground plane, the slot not being appreciably resonant at the operating frequency of the first antenna and the second antenna. The antennas operate in an orthogonal mode. Varying the slot reactance varies the electrical distance over which the coupling current between the two antennas flows. Increased RF isolation to a desired magnitude results by maintaining the orthogonality at desired bands. The RF isolation can be measured and a departure from the desired magnitude of isolation causes the reactance to be varied to increase the RF isolation back to the desired magnitude. The antennas and the slot are placed at locations on the ground plane of high current density.
    Type: Application
    Filed: March 25, 2015
    Publication date: September 29, 2016
    Inventors: Alexandru Daniel Tatomirescu, Poul Olesen, Gert Pedersen, Emil Buskgaard, Samantha Caporal Del Barrio, Pevand Bahramzy, Peter Bundgaard, Simon Svendsen, Ole Jagielski, Boyan Yanakiev
  • Publication number: 20160285159
    Abstract: Antenna systems that can include first and second radiators and an electromagnetic coupler disposed adjacent to the first and the second radiators. The radiators can be tunable to one or more frequencies. The electromagnetic coupler can be, for example, an inductive coupler or a capacitive coupler. One or more of the antenna systems can be configured to use carrier aggregation by tuning the first and/or the second radiators. For example, one or more of the antenna systems can be configured to use inter-band aggregation, intra-band contiguous aggregation, and intra-band non-contiguous aggregation.
    Type: Application
    Filed: March 27, 2015
    Publication date: September 29, 2016
    Inventors: Samantha Caporal Del Barrio, Pevand Bahramzy, Poul Olesen, Peter Bundgaard, Alexandru Daniel Tatomirescu, Emil Buskgaard, Gert F. Pedersen, Simon Svendsen, Ole Jagielski, Boyan Yanakiev
  • Patent number: 9252492
    Abstract: The disclosed invention relates to an antenna configuration that is configured to tune the frequency of transmission without using filters. The antenna configuration comprises a tunable multi-feed antenna configured to wirelessly transmit electromagnetic radiation. A signal generator is configured to generate a plurality of signals that collectively correspond to a signal to be transmitted. The plurality of signals have a phase shift or amplitude difference therebetween. The plurality of signals are provided to a plurality of antenna feeds connected to different spatial locations of the tunable multi-feed antenna. The values of the phase shift and/or amplitude difference define an antenna reflection coefficient that controls the frequency characteristics that the tunable multi-feed antenna operates at, such that by varying the phase shift and or amplitude difference, the frequency characteristics can be selectively adjusted.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: February 2, 2016
    Assignee: Intel Deutschland GmbH
    Inventors: Osama Nafeth Alrabadi, Alexandru Daniel Tatomirescu, Mikael Bergholz Knudsen, Gert F. Pedersen, Mauro Pelosi, Samantha Caporal Del Barrio, Poul Olesen, Peter Bundgaard
  • Patent number: 9225381
    Abstract: The present disclosure relates to a wireless communication system configured to transforming the radiating mechanism of the antenna system in such a way to support different operating modes depending on the needs. In some examples, the wireless communication system comprises an antenna structure connected to a signal process unit. The antenna structure comprises a radiating mechanism configured to transmit or receive electromagnetic radiation. A switchable operating mode element is configured to receive a signal and to dynamically vary a quality factor of the radiating element by selectively routing the signal along one of a plurality of signal paths, which respectively provide different antenna parameters to the radiating mechanism, based upon a current operating mode of the wireless communication system. By dynamically varying a quality factor of the radiating element, the wireless communication system can effectively support different operating modes.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: December 29, 2015
    Assignee: Intel Deutschland GmbH
    Inventors: Mauro Pelosi, Alexandru Daniel Tatomirescu, Mikael Bergholz Knudsen, Gert F. Pedersen, Osama Nafeth Alrabadi, Samantha Caporal Del Barrio, Poul Olesen, Peter Bundgaard
  • Publication number: 20150180123
    Abstract: Described herein are architectures, platforms and methods for electrically tuning radiators in a portable device. The electrical tuning implements platform independent radiating elements or antennas in a portable device.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 25, 2015
    Inventors: Alexandru Daniel Tatomirescu, Poul Olesen, Peter Bundgaard, Pevand Bahramzy, Mikael Knudsen, Gert Perdersen, Emil Buskgaard, Mauro Pelosi, Samantha Caporal Del Barrio
  • Publication number: 20150116158
    Abstract: An antenna having a plurality of ports coupled to at least one radiator opening or protuberance formed on a metallic surface. A plurality of modulators are coupled to the plurality of respective ports and configured to modulate phase or amplitude of a plurality of signals radiated at the plurality of respective ports. A combiner is configured to combine the modulated signals to substantially cancel power reflected from the plurality of respective ports, wherein the plurality of respective ports are functionally aggregated into a single port.
    Type: Application
    Filed: October 28, 2013
    Publication date: April 30, 2015
    Inventors: Osama Nafeth ALRABADI, Alexandru Daniel TATOMIRESCU, Mikael Bergholz KNUDSEN, Gert F. PEDERSEN, Poul OLESEN, Peter BUNDGAARD
  • Patent number: 8884835
    Abstract: An antenna system includes a ground plane including at least one slot, a first antenna element coupled to a first portion of the ground plane, a second antenna element coupled to a second portion of the ground plane which is spaced apart from the first portion and a tuner configured to change the influence of the slot to a current flow through the ground plane from the first portion to the second portion.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: November 11, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Mauro Pelosi, Alexandru Daniel Tatomirescu, Mikael Bergholz Knudsen, Gert F. Pedersen, Osama Nafeth Alrabadi, Samantha Caporal Del Barrio, Poul Olesen, Peter Bundgaard
  • Patent number: 8874047
    Abstract: The disclosed invention relates to a transceiver system having one or more receive antennas that receive a first radio frequency (RF) signal and a plurality of transmit antennas that wirelessly transmit a second RF signal. A local channel determination unit provides data corresponding to the environment of local communication channels (i.e., the communication channels between the transmit antennas and the receive antennas) to a beamforming element, which enables beamforming functionality within the transmit and/or receive antennas (e.g., by using analog or digital weights to vary the radiation pattern generated by the transmit antennas) so as to attenuate RF signals extending between the transmit antennas and the receive antennas. By attenuating signals extending between the transmit and the receive antennas, a high degree of isolation is achieved between transmission and reception paths.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: October 28, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Osama Nafeth Alrabadi, Mikael Bergholz Knudsen, Gert F. Pedersen, Alexandru Daniel Tatomirescu, Mauro Pelosi, Samantha Caporal Del Barrio, Poul Olesen, Peter Bundgaard
  • Publication number: 20140256273
    Abstract: The present disclosure relates to a wireless communication system configured to transforming the radiating mechanism of the antenna system in such a way to support different operating modes depending on the needs. In some examples, the wireless communication system comprises an antenna structure connected to a signal process unit. The antenna structure comprises a radiating mechanism configured to transmit or receive electromagnetic radiation. A switchable operating mode element is configured to receive a signal and to dynamically vary a quality factor of the radiating element by selectively routing the signal along one of a plurality of signal paths, which respectively provide different antenna parameters to the radiating mechanism, based upon a current operating mode of the wireless communication system. By dynamically varying a quality factor of the radiating element, the wireless communication system can effectively support different operating modes.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Inventors: Mauro Pelosi, Alexandru Daniel Tatomirescu, Mikael Bergholz Knudsen, Gert F. Pedersen, Osama Nafeth Alrabadi, Samantha Caporal del Barrio, Poul Olesen, Peter Bundgaard
  • Patent number: 8805300
    Abstract: The disclosed invention relates to a MIMO (multiple input, multiple output) wideband transceiver. In some cases, the MIMO wideband transceiver comprises a signal processor that outputs or receives a plurality of distinguishable data streams. A first data stream is provided to a first antenna port connected to a plurality of wideband antennas, while a second data stream is provided to a second antenna port connected to a wideband antenna. A spatial filter element configured to assign antenna weights to the plurality of wideband antennas, which cause the wideband antennas to operate in a manner that attenuates wireless signals, at a frequency range at which the wideband transmit wideband radiate, in the direction of the wideband antenna without attenuating the wireless signals in other directions. By attenuating signals extending between the plurality of wideband antennas and the wideband antenna, wideband decoupling between first and second antenna ports is achieved.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: August 12, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Osama Nafeth Alrabadi, Mikael Bergholz Knudsen, Gert F. Pedersen, Alexandru Daniel Tatomirescu, Mauro Pelosi, Samantha Caporal Del Barrio, Poul Olesen, Peter Bundgaard
  • Publication number: 20140043201
    Abstract: An antenna system includes a ground plane including at least one slot, a first antenna element coupled to a first portion of the ground plane, a second antenna element coupled to a second portion of the ground plane which is spaced apart from the first portion and a tuner configured to change the influence of the slot to a current flow through the ground plane from the first portion to the second portion.
    Type: Application
    Filed: August 9, 2012
    Publication date: February 13, 2014
    Applicant: Intel Mobile Communications GmbH
    Inventors: Mauro Pelosi, Alexandru Daniel Tatomirescu, Mikael Bergholz Knudsen, Gert F. Pedersen, Osama Nafeth Alrabadi, Samantha Caporal Del Barrio, Poul Olesen, Peter Bundgaard
  • Publication number: 20130244593
    Abstract: The disclosed invention relates to a transceiver system having one or more receive antennas that receive a first radio frequency (RF) signal and a plurality of transmit antennas that wirelessly transmit a second RF signal. A local channel determination unit provides data corresponding to the environment of local communication channels (i.e., the communication channels between the transmit antennas and the receive antennas) to a beamforming element, which enables beamforming functionality within the transmit and/or receive antennas (e.g., by using analog or digital weights to vary the radiation pattern generated by the transmit antennas) so as to attenuate RF signals extending between the transmit antennas and the receive antennas.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 19, 2013
    Applicant: Intel Mobile Communications GmbH
    Inventors: Osama Nafeth Alrabadi, Mikael Bergholz Knudsen, Gert F. Pedersen, Alexandru Daniel Tatomirescu, Mauro Pelosi, Samantha Caporal Del Barrio, Poul Olesen, Peter Bundgaard