Patents by Inventor Alexandru O. Balan

Alexandru O. Balan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10671841
    Abstract: Attribute state classification techniques are described. In one or more implementations, one or more pixels of an image are classified by a computing device as having one or several states for one or more attributes that do not identify corresponding body parts of a user. A gesture is recognized by the computing device that is operable to initiate one or more operations of the computing device based at least in part of the state classifications of the one or more pixels of one or more attributes.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: June 2, 2020
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Alexandru O. Balan, Richard E. Moore, Mark J. Finocchio
  • Patent number: 10546417
    Abstract: A system and method of estimating the body shape of an individual from input data such as images or range maps. The body may appear in one or more poses captured at different times and a consistent body shape is computed for all poses. The body may appearin minimal tight-fitting clothing or in normal clothing wherein the described method produces an estimate of the body shape under the clothing. Clothed or bare regions of the body are detected via image classification and the fitting method is adapted to treat each region differently. Body shapes are represented parametrically and are matched to other bodies based on shape similarity and other features. Standard measurements are extracted using parametric or non-parametric functions of body shape. The system components support many applications in body scanning, advertising, social networking, collaborative filtering and Internet clothing shopping.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: January 28, 2020
    Assignee: BROWN UNIVERSITY
    Inventors: Michael J. Black, Alexandru O. Balan, Alexander W. Weiss, Leonid Sigal, Matthew M. Loper, Timothy S. St. Clair
  • Publication number: 20190333267
    Abstract: A system and method of estimating the body shape of an individual from input data such as images or range maps. The body may appear in one or more poses captured at different times and a consistent body shape is computed for all poses. The body may appearin minimal tight-fitting clothing or in normal clothing wherein the described method produces an estimate of the body shape under the clothing. Clothed or bare regions of the body are detected via image classification and the fitting method is adapted to treat each region differently. Body shapes are represented parametrically and are matched to other bodies based on shape similarity and other features. Standard measurements are extracted using parametric or non-parametric functions of body shape. The system components support many applications in body scanning, advertising, social networking, collaborative filtering and Internet clothing shopping.
    Type: Application
    Filed: June 26, 2019
    Publication date: October 31, 2019
    Inventors: Michael J. BLACK, Alexandru O. BALAN, Alexander W. Weiss, Leonid SIGAL, Matthew M. LOPER, Timothy S. ST. CLAIR
  • Patent number: 10339706
    Abstract: A system and method of estimating the body shape of an individual from input data such as images or range maps. The body may appear in one or more poses captured at different times and a consistent body shape is computed for all poses. The body may appear in minimal tight-fitting clothing or in normal clothing wherein the described method produces an estimate of the body shape under the clothing. Clothed or bare regions of the body are detected via image classification and the fitting method is adapted to treat each region differently. Body shapes are represented parametrically and are matched to other bodies based on shape similarity and other features. Standard measurements are extracted using parametric or non-parametric functions of body shape. The system components support many applications in body scanning, advertising, social networking, collaborative filtering and Internet clothing shopping.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: July 2, 2019
    Assignee: BROWN UNIVERSITY
    Inventors: Michael J. Black, Alexandru O. Balan, Alexander W. Weiss, Leonid Sigal, Matthew M. Loper, Timothy S. St. Clair
  • Publication number: 20180293788
    Abstract: A system and method of estimating the body shape of an individual from input data such as images or range maps. The body may appear in one or more poses captured at different times and a consistent body shape is computed for all poses. The body may appear in minimal tight-fitting clothing or in normal clothing wherein the described method produces an estimate of the body shape under the clothing. Clothed or bare regions of the body are detected via image classification and the fitting method is adapted to treat each region differently. Body shapes are represented parametrically and are matched to other bodies based on shape similarity and other features. Standard measurements are extracted using parametric or non-parametric functions of body shape. The system components support many applications in body scanning, advertising, social networking, collaborative filtering and Internet clothing shopping.
    Type: Application
    Filed: June 14, 2018
    Publication date: October 11, 2018
    Inventors: Michael J. BLACK, Alexandru O. BALAN, Alexander W. Weiss, Leonid SIGAL, Matthew M. LOPER, Timothy S. ST. CLAIR
  • Patent number: 10002460
    Abstract: A system and method of estimating the body shape of an individual from input data such as images or range maps. The body may appear in one or more poses captured at different times and a consistent body shape is computed for all poses. The body may appear in minimal tight-fitting clothing or in normal clothing wherein the described method produces an estimate of the body shape under the clothing. Clothed or bare regions of the body are detected via image classification and the fitting method is adapted to treat each region differently. Body shapes are represented parametrically and are matched to other bodies based on shape similarity and other features. Standard measurements are extracted using parametric or non-parametric functions of body shape. The system components support many applications in body scanning, advertising, social networking, collaborative filtering and Internet clothing shopping.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: June 19, 2018
    Assignee: BROWN UNIVERSITY
    Inventors: Michael J. Black, Alexandru O. Balan, Alexander W. Weiss, Leonid Sigal, Matthew M. Loper, Timothy S. St. Clair
  • Publication number: 20160203361
    Abstract: A system and method of estimating the body shape of an individual from input data such as images or range maps. The body may appear in one or more poses captured at different times and a consistent body shape is computed for all poses. The body may appear in minimal tight-fitting clothing or in normal clothing wherein the described method produces an estimate of the body shape under the clothing. Clothed or bare regions of the body are detected via image classification and the fitting method is adapted to treat each region differently. Body shapes are represented parametrically and are matched to other bodies based on shape similarity and other features. Standard measurements are extracted using parametric or non-parametric functions of body shape. The system components support many applications in body scanning, advertising, social networking, collaborative filtering and Internet clothing shopping.
    Type: Application
    Filed: October 16, 2015
    Publication date: July 14, 2016
    Inventors: Michael J. Black, Alexandru O. Balan, Alexander W. Weiss, Leonid Sigal, Matthew M. Loper, Timothy S. St. Clair
  • Patent number: 9189886
    Abstract: A system and method of estimating the body shape of an individual from input data such as images or range maps. The body may appear in one or more poses captured at different times and a consistent body shape is computed for all poses. The body may appear in minimal tight-fitting clothing or in normal clothing wherein the described method produces an estimate of the body shape under the clothing. Clothed or bare regions of the body are detected via image classification and the fitting method is adapted to treat each region differently. Body shapes are represented parametrically and are matched to other bodies based on shape similarity and other features. Standard measurements are extracted using parametric or non-parametric functions of body shape. The system components support many applications in body scanning, advertising, social networking, collaborative filtering and Internet clothing shopping.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: November 17, 2015
    Assignee: Brown University
    Inventors: Michael J. Black, Alexandru O. Balan, Alexander W. Weiss, Leonid Sigal, Matthew M. Loper, Timothy S. St. Clair
  • Patent number: 8878906
    Abstract: Technology is described for determining and using invariant features for computer vision. A local orientation may be determined for each depth pixel in a subset of the depth pixels in a depth map. The local orientation may an in-plane orientation, an out-out-plane orientation or both. A local coordinate system is determined for each of the depth pixels in the subset based on the local orientation of the corresponding depth pixel. A feature region is defined relative to the local coordinate system for each of the depth pixels in the subset. The feature region for each of the depth pixels in the subset is transformed from the local coordinate system to an image coordinate system of the depth map. The transformed feature regions are used to process the depth map.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: November 4, 2014
    Assignee: Microsoft Corporation
    Inventors: Jamie D. J. Shotton, Mark J. Finocchio, Richard E. Moore, Alexandru O. Balan, Kyungsuk David Lee
  • Patent number: 8752963
    Abstract: The technology provides various embodiments for controlling brightness of a see-through, near-eye mixed display device based on light intensity of what the user is gazing at. The opacity of the display can be altered, such that external light is reduced if the wearer is looking at a bright object. The wearer's pupil size may be determined and used to adjust the brightness used to display images, as well as the opacity of the display. A suitable balance between opacity and brightness used to display images may be determined that allows real and virtual objects to be seen clearly, while not causing damage or discomfort to the wearer's eyes.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: June 17, 2014
    Assignee: Microsoft Corporation
    Inventors: Daniel J. McCulloch, Ryan L. Hastings, Kevin A. Geisner, Robert L. Crocco, Alexandru O. Balan, Derek L. Knee, Michael J. Scavezze, Stephen G. Latta, Brian J. Mount
  • Publication number: 20140002607
    Abstract: Technology is described for determining and using invariant features for computer vision. A local orientation may be determined for each depth pixel in a subset of the depth pixels in a depth map. The local orientation may an in-plane orientation, an out-out-plane orientation or both. A local coordinate system is determined for each of the depth pixels in the subset based on the local orientation of the corresponding depth pixel. A feature region is defined relative to the local coordinate system for each of the depth pixels in the subset. The feature region for each of the depth pixels in the subset is transformed from the local coordinate system to an image coordinate system of the depth map. The transformed feature regions are used to process the depth map.
    Type: Application
    Filed: November 28, 2012
    Publication date: January 2, 2014
    Inventors: Jamie D.J. Shotton, Mark J. Finocchio, Richard E. Moore, Alexandru O. Balan, Kyungsuk David Lee
  • Publication number: 20130114043
    Abstract: The technology provides various embodiments for controlling brightness of a see-through, near-eye mixed display device based on light intensity of what the user is gazing at. The opacity of the display can be altered, such that external light is reduced if the wearer is looking at a bright object. The wearer's pupil size may be determined and used to adjust the brightness used to display images, as well as the opacity of the display. A suitable balance between opacity and brightness used to display images may be determined that allows real and virtual objects to be seen clearly, while not causing damage or discomfort to the wearer's eyes.
    Type: Application
    Filed: November 4, 2011
    Publication date: May 9, 2013
    Inventors: Alexandru O. Balan, Ryan L. Hastings, Stephen G. Latta, Michael J. Scavezze, Daniel J. McCulloch, Derek L. Knee, Brian J. Mount, Kevin A. Geisner, Robert L. Crocco
  • Publication number: 20120314031
    Abstract: Technology is described for determining and using invariant features for computer vision. A local orientation may be determined for each depth pixel in a subset of the depth pixels in a depth map. The local orientation may an in-plane orientation, an out-out-plane orientation or both. A local coordinate system is determined for each of the depth pixels in the subset based on the local orientation of the corresponding depth pixel. A feature region is defined relative to the local coordinate system for each of the depth pixels in the subset. The feature region for each of the depth pixels in the subset is transformed from the local coordinate system to an image coordinate system of the depth map. The transformed feature regions are used to process the depth map.
    Type: Application
    Filed: June 7, 2011
    Publication date: December 13, 2012
    Applicant: MICROSOFT CORPORATION
    Inventors: Jamie D. J. Shotton, Mark J. Finocchio, Richard E. Moore, Alexandru O. Balan, Kyungsuk David Lee
  • Publication number: 20120280897
    Abstract: Attribute state classification techniques are described. In one or more implementations, one or more pixels of an image are classified by a computing device as having one or several states for one or more attributes that do not identify corresponding body parts of a user. A gesture is recognized by the computing device that is operable to initiate one or more operations of the computing device based at least in part of the state classifications of the one or more pixels of one or more attributes.
    Type: Application
    Filed: May 2, 2011
    Publication date: November 8, 2012
    Applicant: MICROSOFT CORPORATION
    Inventors: Alexandru O. Balan, Richard E. Moore, Mark J. Finocchio
  • Publication number: 20100111370
    Abstract: A system and method of estimating the body shape of an individual from input data such as images or range maps. The body may appear in one or more poses captured at different times and a consistent body shape is computed for all poses. The body may appear in minimal tight-fitting clothing or in normal clothing wherein the described method produces an estimate of the body shape under the clothing. Clothed or bare regions of the body are detected via image classification and the fitting method is adapted to treat each region differently. Body shapes are represented parametrically and are matched to other bodies based on shape similarity and other features. Standard measurements are extracted using parametric or non-parametric functions of body shape. The system components support many applications in body scanning, advertising, social networking, collaborative filtering and Internet clothing shopping.
    Type: Application
    Filed: August 14, 2009
    Publication date: May 6, 2010
    Inventors: Michael J. Black, Alexandru O. Balan, Alexander W. Weiss, Leonid Sigal, Matthew M. Loper, Timothy S. St. Clair