Patents by Inventor Alexey Avdokhin

Alexey Avdokhin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11975405
    Abstract: A multiple wavelength laser processing system is configured with a multiple wavelength laser source for generating a multiple wavelength coaxial laser processing beam. The laser processing system further includes a multiple wavelength optical system to deliver the coaxial laser processing beam to a laser-material interaction zone on the surface of a workpiece such that each of the a first and a second laser wavelengths in the processing beam impinge at least a portion of the interaction zone as respective first and second concentric laser spots. The multiple wavelength optical system includes a multiple wavelength beam collimator, a configurable chromatic optic, and a laser processing focus lens, wherein the configurable chromatic optic provides an adjustment to the relative focus distance of the first and second laser wavelengths.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: May 7, 2024
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Pancho Tzankov, Jonathan Ehrmann, Jeffrey Kmetec, Alexey Avdokhin, Andrei Babushkin
  • Publication number: 20240136783
    Abstract: A laser system is configured with at least one light amplifying device sequentially outputting a light signal at first and at least one additional operating wavelengths over respective time intervals. Each time interval is shorter than the predetermined lifespan of the light amplifying device. The total useful life of the light amplifying device, operating at a plurality of wavelengths, is 3-10 times longer than the predetermined lifespan.
    Type: Application
    Filed: June 7, 2022
    Publication date: April 25, 2024
    Applicant: IPG PHOTONICS CORPORATION
    Inventors: Alexey Avdokhin, Nikolai Platonov, Pankaj Kadwani, Jimyung Kim
  • Publication number: 20230307882
    Abstract: A laser head for a high power fiber laser system has a 5 to 10 mm high housing which is provided with a bottom. The housing encloses an input collimator assembly which collimates a single mode pump light at a fundamental frequency and maximum power of 2 kW. The housing further encases a multi-cascaded nonlinear frequency converter receiving the collimated pump light so as to convert the fundamental frequency into a higher harmonic thereof, wherein converted light at the higher frequency has a maximum power of 1 kW. Enclosed in the housing are electronic and light guiding optical components mounted in the housing. The bottom of the housing is an electro-optical printed circuit board (EO PCB) which directly supports the input collimator assembly, multi-cascaded nonlinear frequency converter, electronic and optical components at respective designated locations.
    Type: Application
    Filed: August 23, 2021
    Publication date: September 28, 2023
    Applicant: IPG PHOTONICS CORPORATION
    Inventors: Alexey AVDOKHIN, Andreas VAUPEL, Tetsuo OHARA, Kriti CHARAN, Jhih-An YANG
  • Patent number: 11433483
    Abstract: A multiple wavelength laser processing system is configured with a multiple wavelength laser source for generating a multiple wavelength coaxial laser processing beam. The laser processing system further includes a multiple wavelength optical system to deliver the coaxial laser processing beam to a laser-material interaction zone on the surface of a workpiece such that each of the first and a second laser wavelengths in the processing beam impinge at least a portion of the interaction zone as respective first and second concentric laser spots. The multiple wavelength optical system includes a multiple wavelength beam collimator, a configurable chromatic optic, and a laser processing focus lens, wherein the configurable chromatic optic provides an adjustment to the relative focus distance of the first and second laser wavelengths.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: September 6, 2022
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Alexey Avdokhin, Pancho Tzankov, Andrei Babushkin, Jonathan Ehrmann, Jeffrey Kmetec
  • Publication number: 20220149579
    Abstract: A laser system and method. In one example, the laser system includes an optical pulse stretcher configured to stretch pulse durations of an input train of input pulses to produce a train of stretched laser pulses, a pulse replicator module configured to increase a pulse repetition rate of the train of stretched laser pulses to produce a modified pulse train of laser light, a fiber power amplifier configured to amplify the modified pulse train to produce amplified laser pulses, and a pulse compressor that temporally compresses the amplified laser pulses to produce amplified and compressed laser pulses. The system may further include a nonlinear frequency conversion stage comprising at least one nonlinear crystal.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 12, 2022
    Applicant: IPG PHOTONICS CORPORATION
    Inventors: Alex YUSIM, Igor SAMARTSEV, Manuel J. LEONARDO, Vadim SMIRNOV, Pankaj KADWANI, Alexey AVDOKHIN, Andreas VAUPEL
  • Publication number: 20200384572
    Abstract: A multiple wavelength laser processing system is configured with a multiple wavelength laser source for generating a multiple wavelength coaxial laser processing beam. The laser processing system further includes a multiple wavelength optical system to deliver the coaxial laser processing beam to a laser-material interaction zone on the surface of a workpiece such that each of the a first and a second laser wavelengths in the processing beam impinge at least a portion of the interaction zone as respective first and second concentric laser spots. The multiple wavelength optical system includes a multiple wavelength beam collimator, a configurable chromatic optic, and a laser processing focus lens, wherein the configurable chromatic optic provides an adjustment to the relative focus distance of the first and second laser wavelengths.
    Type: Application
    Filed: November 20, 2018
    Publication date: December 10, 2020
    Inventors: Pancho TZANKOV, Jonathan EHRMANN, Jeffrey KMETEC, Alexey AVDOKHIN, Andrei BABUSHKIN
  • Patent number: 10520790
    Abstract: A single-mode (SM) Green fiber laser is configured to operate in a Green spectral range in a continuous-wave (CW) or quasi-continuous-wave (QCW) mode. The Green laser is configured with a pump source, outputting narrow-linewidth pump light at a fundamental wavelength in one (1) micrometer spectral range, and a single-pass second harmonic generator (SHG), such as a nonlinear LBO crystal, frequency doubling the pump light to output Green light at a signal wavelength. The pump light source is configured to have a MOPFA configuration with a SM seed which emits the SM pump light with a linewidth narrower than 0.2 nm, and at least one ytterbium (“Yb”) fiber amplifier receiving and amplifying the SM pump light at the fundamental wavelength while maintaining the linewidth narrower than 0.2 nm. The SM Green fiber laser operates with a wall plug efficiency between 15% and 30% in a 510-540 nm signal wavelength range and a power range between about 50 W and kW-levels.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: December 31, 2019
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Valentin Gapontsev, Igor Samartsev, Alexey Avdokhin
  • Publication number: 20190329357
    Abstract: A multiple wavelength laser processing system is configured with a multiple wavelength laser source for generating a multiple wavelength coaxial laser processing beam. The laser processing system further includes a multiple wavelength optical system to deliver the coaxial laser processing beam to a laser-material interaction zone on the surface of a workpiece such that each of the first and a second laser wavelengths in the processing beam impinge at least a portion of the interaction zone as respective first and second concentric laser spots. The multiple wavelength optical system includes a multiple wavelength beam collimator, a configurable chromatic optic, and a laser processing focus lens, wherein the configurable chromatic optic provides an adjustment to the relative focus distance of the first and second laser wavelengths.
    Type: Application
    Filed: November 20, 2017
    Publication date: October 31, 2019
    Inventors: Alexey AVDOKHIN, Pancho TZANKOV, Andrei BABUSHKIN, Jonathan EHRMANN, Jeffrey KMETEC
  • Patent number: 10409148
    Abstract: A high dynamic range projector (HDRP) is configured with at least one spatial light modulator having red, green and blue digital light projector (DPL) chips, a light laser source including red, green and blue (RGB) light laser systems which are operative to illuminate respective DLP chips; and a central processing unit (CPU) coupled to the DLP engines and respective RGB light laser systems, wherein the CPU is operative to determine an optimal average power of each of the RGB light laser systems at a frame rate based on a desired contrast ratio.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: September 10, 2019
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Oleg Shkurikhin, Alexey Avdokhin, Andrei Babushkin, Yuri Erokhin
  • Publication number: 20190163032
    Abstract: A single-mode (SM) Green fiber laser is configured to operate in a Green spectral range in a continuous-wave (CW) or quasi-continuous-wave (QCW) mode. The Green laser is configured with a pump source, outputting narrow-linewidth pump light at a fundamental wavelength in one (1) micrometer spectral range, and a single-pass second harmonic generator (SHG), such as a nonlinear LBO crystal, frequency doubling the pump light to output Green light at a signal wavelength. The pump light source is configured to have a MOPFA configuration with a SM seed which emits the SM pump light with a linewidth narrower than 0.2 nm, and at least one ytterbium (“Yb”) fiber amplifier receiving and amplifying the SM pump light at the fundamental wavelength while maintaining the linewidth narrower than 0.2 nm. The SM Green fiber laser operates with a wall plug efficiency between 15% and 30% in a 510-540 nm signal wavelength range and a power range between about 50 W and kW-levels.
    Type: Application
    Filed: January 6, 2015
    Publication date: May 30, 2019
    Inventors: Valentin Gapontsev, Igor SAMARTSEV, Alexey AVDOKHIN
  • Patent number: 10209604
    Abstract: A frequency converter for converting a single mode input beam at a fundamental frequency to an output beam at a converted frequency is configured with a plurality of spaced optical components defining a resonant cavity. The optical components shape the input beam with at least one beam waist in the cavity. The frequency converter further includes a non-linear crystal located within the cavity in either a divergent beam with a Rayleigh range smaller than a cavity round trip length so that a center of the crystal is spaced from the beam waist along a beam path, or in a collimated beam with a Rayleigh range greater than the cavity round trip length.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: February 19, 2019
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Alexey Avdokhin, Oleksiy Andrusyak
  • Patent number: 10170886
    Abstract: An RGB light source for a luminaire projector system includes Red, Green and Blue lasers each outputting a randomly polarized (RP) single mode (SM) light with at least a 4 nm spectral linewidth. The Green laser has a MOPFA-structured pump which outputs a pulsed pump beam at a fundamental wavelength in a 1 ?m wavelength range and further includes a SHG. The SHG includes an LBO nonlinear crystal receiving the pulsed pump beam and outputting a train of pulses of BB Green light. The Red laser is configured with a QCW fiber laser pump and a frequency converter with an LBO nonlinear crystal outputting a train of pulses of red light in a 6xx nm wavelength range.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: January 1, 2019
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Manuel Leonardo, Igor Samartsev, Alexey Avdokhin, Gregory Keaton
  • Publication number: 20180233878
    Abstract: An RGB light source for a luminaire projector system includes Red, Green and Blue lasers each outputting a randomly polarized (RP) single mode (SM) light with at least a 4 nm spectral linewidth. The Green laser has a MOPFA-structured pump which outputs a pulsed pump beam at a fundamental wavelength in a 1 ?m wavelength range and further includes a SHG. The SHG includes an LBO nonlinear crystal receiving the pulsed pump beam and outputting a train of pulses of BB Green light. The Red laser is configured with a QCW fiber laser pump and a frequency converter with an LBO nonlinear crystal outputting a train of pulses of red light in a 6xx nm wavelength range.
    Type: Application
    Filed: September 16, 2015
    Publication date: August 16, 2018
    Inventors: Manuel LEONARDO, Igor SAMARTSEV, Alexey AVDOKHIN, Gregory KEATON
  • Publication number: 20180203339
    Abstract: A high dynamic range projector (HDRP) is configured with at least one spatial light modulator having red, green and blue digital light projector (DPL) chips, a light laser source including red, green and blue (RGB) light laser systems which are operative to illuminate respective DLP chips; and a central processing unit (CPU) coupled to the DLP engines and respective RGB light laser systems, wherein the CPU is operative to determine an optimal average power of each of the RGB light laser systems at a frame rate based on a desired contrast ratio.
    Type: Application
    Filed: November 7, 2017
    Publication date: July 19, 2018
    Inventors: Oleg SHKURIKHIN, Alexey AVDOKHIN, Andrei BABUSHKIN, Yuri EROKHIN
  • Patent number: 10008819
    Abstract: A broad line red light generator is configured with a single mode (SM) pulsed ytterbium (“Yb”) fiber laser pump source outputting pump light in a fundamental mode (“FM”) at a pump wavelength which is selected from a 1030-1120 nm wavelength range. The disclosed generator further includes a SM fiber Raman converter spliced to an output of the Yb fiber laser pump source. The Raman converter induces an “n” order frequency Stokes shift of the pump light to output the pump light at a Raman-shifted wavelength within 1220 and 1300 nm wavelength range with a broad spectral line of at least 10 nm. The disclosed light generator further has a single pass second harmonic generator (“SHG”) with a lithium triborate (“LBO”) nonlinear optical crystal having a spectral acceptance linewidth which is sufficient to cover the broad spectral line of the pump light. The SHG generates a SM pulsed broad-line red light with a broad spectral line of at least 4 nm.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: June 26, 2018
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Manuel Leonardo, Igor Samartsev, Alexey Avdokhin, Gregory Keaton
  • Patent number: 9941120
    Abstract: The inventive system for crystallizing an amorphous silicon (a-Si) film is configured with a quasi-continuous wave fiber laser source operative to emit a film irradiating pulsed beam. The fiber laser source is operative to emit a plurality of non-repetitive pulses incident on the a-Si. In particular, the fiber laser is operative to emit multiple discrete packets of film irradiating light at a burst repetition rate (BRR), and a plurality of pulses within each packet emitted at a pulse repetition rate (PRR) which is higher than the BRR. The pulse energy, pulse duration of each pulse and the PRR are controlled so that each packet has a desired packet temporal power profile (W/cm2) and packet energy sufficient to provide transformation of a-Si to polysilicon (p-Si) at each location of the film which is exposed to at least one packets.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: April 10, 2018
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Alexey Avdokhin, Yuri Erokhin, Manuel Leonardo, Alexander Limanov, Igor Samartsev, Michael von Dadelszen
  • Publication number: 20170294754
    Abstract: A broad line red light generator is configured with a single mode (SM) pulsed ytterbium (“Yb”) fiber laser pump source outputting pump light in a fundamental mode (“FM”) at a pump wavelength which is selected from a 1030-1120 nm wavelength range. The disclosed generator further includes a SM fiber Raman converter spliced to an output of the Yb fiber laser pump source. The Raman converter induces an “n” order frequency Stokes shift of the pump light to output the pump light at a Raman-shifted wavelength within 1220 and 1300 nm wavelength range with a broad spectral line of at least 10 nm. The disclosed light generator further has a single pass second harmonic generator (“SHG”) with a lithium triborate (“LBO”) nonlinear optical crystal having a spectral acceptance linewidth which is sufficient to cover the broad spectral line of the pump light. The SHG generates a SM pulsed broad-line red light with a broad spectral line of at least 4 nm.
    Type: Application
    Filed: September 16, 2015
    Publication date: October 12, 2017
    Inventors: Manuel LEONARDO, Igor SAMARTSEV, Alexey AVDOKHIN, Gregory KEATON
  • Publication number: 20160013057
    Abstract: The inventive system for crystallizing an amorphous silicon (a-Si) film is configured with a quasi-continuous wave fiber laser source operative to emit a film irradiating pulsed beam. The fiber laser source is operative to emit a plurality of non-repetitive pulses incident on the a-Si. In particular, the fiber laser is operative to emit multiple discrete packets of film irradiating light at a burst repetition rate (BRR), and a plurality of pulses within each packet emitted at a pulse repetition rate (PRR) which is higher than the BRR. The pulse energy, pulse duration of each pulse and the PRR are controlled so that each packet has a desired packet temporal power profile (W/cm2) and packet energy sufficient to provide transformation of a-Si to polysilicon (p-Si) at each location of the film which is exposed to at least one packets.
    Type: Application
    Filed: July 2, 2015
    Publication date: January 14, 2016
    Inventors: Alexey AVDOKHIN, Yuri EROKHIN, Manuel LEONARDO, Alexander LIMANOV, Igor SAMARTSEV, Michael von Dadelszen
  • Publication number: 20150249313
    Abstract: A frequency converter for converting a single mode input beam at a fundamental frequency to an output beam at a converted frequency is configured with a plurality of spaced optical components defining a resonant cavity. The optical components shape the input beam with at least one beam waist in the cavity.
    Type: Application
    Filed: April 15, 2015
    Publication date: September 3, 2015
    Inventors: Alexey AVDOKHIN, Oleksiy Andrusyak
  • Patent number: RE48398
    Abstract: The inventive system for crystallizing an amorphous silicon (a-Si) film is configured with a quasi-continuous wave fiber laser source operative to emit a film irradiating pulsed beam. The fiber laser source is operative to emit a plurality of non-repetitive pulses incident on the a-Si. In particular, the fiber laser is operative to emit multiple discrete packets of film irradiating light at a burst repetition rate (BRR), and a plurality of pulses within each packet emitted at a pulse repetition rate (PRR) which is higher than the BRR. The pulse energy, pulse duration of each pulse and the PRR are controlled so that each packet has a desired packet temporal power profile (W/cm2) and packet energy sufficient to provide transformation of a-Si to polysilicon (p-Si) at each location of the film which is exposed to at least one packets.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: January 19, 2021
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Alexey Avdokhin, Yuri Erokhin, Manuel Leonardo, Alexander Limanov, Igor Samartsev, Michael von Dadelszen