Patents by Inventor Alfred Hagemeyer

Alfred Hagemeyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090011930
    Abstract: The present invention is directed to cerium compositions and methods for making such metal oxide compositions, specifically, such metal oxide compositions having high surface area, high metal/metal oxide content, and/or thermal stability with inexpensive and easy to handle materials.
    Type: Application
    Filed: November 1, 2007
    Publication date: January 8, 2009
    Applicant: Symyx Technologies, Inc.
    Inventor: Alfred Hagemeyer
  • Patent number: 7473667
    Abstract: A method and catalysts and fuel processing apparatus for producing a hydrogen-rich gas, such as a hydrogen-rich syngas are disclosed. According to the method, a CO-containing gas, such as a syngas, contacts a platinum-free ruthenium-cobalt water gas shift (“WGS”) catalyst, in the presence of water and preferably at a temperature of less than about 450° C., to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a platinum-free ruthenium-cobalt water gas shift catalyst formulated from: a) Ru, its oxides or mixtures thereof, b) Co, Mo, their oxides or mixtures thereof, and c) at least one of Li, Na, K, Rb, Cs, Ti, Zr, Cr, Fe, La, Ce, Eu, their oxides and mixtures thereof. The WGS catalyst may be supported on a carrier, such as any one member or a combination of alumina, zirconia, titania, ceria, magnesia, lanthania, niobia, zeolite, perovskite, silica clay, yttria and iron oxide. Fuel processors containing such water gas shift catalysts are also disclosed.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: January 6, 2009
    Assignees: Honda Giken Koygo Kabushiki Kaisha, Symyx Technologies, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Michael Herrmann, Andreas Lesik, Christopher James Brooks, Cory Bernard Phillips
  • Publication number: 20080287289
    Abstract: The present invention addresses at least four different aspects relating to catalyst structure, methods of making those catalysts and methods of using those catalysts for making alkenyl alkanoates. Separately or together in combination, the various aspects of the invention are directed at improving the production of alkenyl alkanoates and VA in particular, including reduction of by-products and improved production efficiency. A first aspect of the present invention pertains to a unique palladium/gold catalyst or pre-catalyst (optionally calcined) that includes rhodium or another metal. A second aspect pertains to a palladium/gold catalyst or pre-catalyst that is based on a layered support material where one layer of the support material is substantially free of catalytic components. A third aspect pertains to a palladium/gold catalyst or pre-catalyst on a zirconia containing support material.
    Type: Application
    Filed: July 31, 2008
    Publication date: November 20, 2008
    Inventors: Tao Wang, Les Wade, Ioan Nicolau, Barbara Kimmich, Victor Wong, Yumin Liu, Jun Han, Valery Sokolovskii, Alfred Hagemeyer, David M. Lowe, Anthony Volpe, Karin Yaccato
  • Publication number: 20080287285
    Abstract: The present invention addresses at least four different aspects relating to catalyst structure, methods of making those catalysts and methods of using those catalysts for making alkenyl alkanoates. Separately or together in combination, the various aspects of the invention are directed at improving the production of alkenyl alkanoates and VA in particular, including reduction of by-products and improved production efficiency. A first aspect of the present invention pertains to a unique palladium/gold catalyst or pre-catalyst (optionally calcined) that includes rhodium or another metal. A second aspect pertains to a palladium/gold catalyst or pre-catalyst that is based on a layered support material where one layer of the support material is substantially free of catalytic components. A third aspect pertains to a palladium/gold catalyst or pre-catalyst on a zirconia containing support material.
    Type: Application
    Filed: July 31, 2008
    Publication date: November 20, 2008
    Inventors: Tao Wang, Les Wade, Ioan Nicolau, Barbara Kimmich, Victor Wong, Yumin Liu, Jun Han, Valery Sokolovskii, Alfred Hagemeyer, David M. Lowe, Anthony Volpe, Karin Yaccato
  • Publication number: 20080287290
    Abstract: The present invention addresses at least four different aspects relating to catalyst structure, methods of making those catalysts and methods of using those catalysts for making alkenyl alkanoates. Separately or together in combination, the various aspects of the invention are directed at improving the production of alkenyl alkanoates and VA in particular, including reduction of by-products and improved production efficiency. A first aspect of the present invention pertains to a unique palladium/gold catalyst or pre-catalyst (optionally calcined) that includes rhodium or another metal. A second aspect pertains to a palladium/gold catalyst or pre-catalyst that is based on a layered support material where one layer of the support material is substantially free of catalytic components. A third aspect pertains to a palladium/gold catalyst or pre-catalyst on a zirconia containing support material.
    Type: Application
    Filed: July 31, 2008
    Publication date: November 20, 2008
    Inventors: Tao Wang, Les Wade, Ioan Nicolau, Barbara Kimmich, Victor Wong, Yumin Liu, Jun Han, Valery Sokolovskii, Alfred Hagemeyer, David M. Lowe, Anthony Volpe, Karin Yaccato
  • Publication number: 20080233039
    Abstract: The present invention is directed to carbon monoxide oxidation reactions in the presence of an O2 containing gas, nitrogen oxide conversion reactions, volatile organic compound conversion reactions in the presence of an O2 containing gas, and combinations thereof, and catalysts for use in those reactions. The catalyst comprises cobalt, its oxides or mixtures thereof and ruthenium, its oxides or mixtures thereof.
    Type: Application
    Filed: June 1, 2006
    Publication date: September 25, 2008
    Applicant: SYMYX TECHNOLOGIES, INC.
    Inventors: Alfred Hagemeyer, Anthony F. Volpe, Valery Sokolovskii, Andreas Lesik, Guido Streukens
  • Publication number: 20080146438
    Abstract: Supported metallic catalysts comprised of a Group VIII metal, a Group VIB metal, and an organic additive, and methods for synthesizing supported metallic catalysts are provided. The catalysts are prepared by a method wherein precursors of both metals are mixed and interacted with at least one organic additive, dried, calcined, and sulfided. The catalysts are used for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Application
    Filed: October 11, 2007
    Publication date: June 19, 2008
    Inventors: Chuangsheng Bai, EL-Mekki El-Malki, Jeff Elks, Zhiguo Hou, Jon M. McConnachie, Pallassana S. Venkataraman, Jason Wu, Peter W. Jacobs, Jun Han, Daniel M. Giaquinta, Alfred Hagemeyer, Valery Sokolovskii, Anthony F. Volpe, David M. Lowe
  • Publication number: 20080132407
    Abstract: Bulk metallic catalysts comprised of a Group VIII metal and a Group VIB metal and methods for synthesizing bulk metallic catalysts are provided. The catalysts are prepared by a method wherein precursors of both metals are mixed and interacted with at least one organic acid, such as glyoxylic acid, dried, calcined, and sulfided. The catalysts are used for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Application
    Filed: October 9, 2007
    Publication date: June 5, 2008
    Inventors: Chuansheng Bai, El-Mekki El-Malki, Jeff Elks, Zhiguo Hou, Jon M. McConnachie, Pallassana S. Venkataraman, Jason Wu, Jun Han, Daniel Giaquinta, Alfred Hagemeyer, Valery Sokolovskii, Anthony F. Volpe, David Michael Lowe
  • Publication number: 20080051280
    Abstract: The invention relates to noble metal-free nickel catalysts that exhibit both high activity and selectivity to hydrogen generation and carbon monoxide oxidation. The noble metal-free water gas shift catalyst of the invention comprises Ni in either a supported or a bulk state and at least one of Ge, Cd, In, Sn, Sb, Te, Pb, their oxides and mixtures thereof.
    Type: Application
    Filed: September 17, 2007
    Publication date: February 28, 2008
    Applicants: Honda Giken Kogyo Kabushiki Kaisha, Symyx Technologies, Inc.
    Inventors: Alfred Hagemeyer, Christopher Brooks, Raymond Carhart, Karin Yaccato, Michael Herrmann
  • Publication number: 20070289903
    Abstract: Methods and apparatus for combinatorial (i.e., high-throughput) materials research, such as catalysis research, that involves parallel apparatus for simultaneously effecting mechanical treatments such as grinding, mixing, pressing, crushing, sieving, and/or fractionating of such materials are disclosed. The methods and apparatus are useful for mechanically treating catalysis materials and other solid materials, including without limitation, electronic materials such as phosphors, colorants such as pigments, and pharmaceuticals such as crystalline drugs or drug candidates. The simultaneous protocols and parallel apparatus offer substantial improvements in overall throughput for preparing arrays of materials, such as catalysis materials.
    Type: Application
    Filed: August 28, 2007
    Publication date: December 20, 2007
    Applicant: Symyx Technologies, Inc.
    Inventors: Claus Lugmair, Alfred Hagemeyer, Lynn Erden, Anthony Volpe, David Lowe, Yumin Liu
  • Patent number: 7270798
    Abstract: The invention relates to methods of using noble metal-free nickel catalysts to generate a hydrogen-rich gas from gas mixtures containing carbon monoxide and water, such as water-containing syngas mixtures, where the nickel may exist in either a supported or a bulk state. The noble metal-free water gas shift catalyst of the invention comprises Ni in either a supported or a bulk state and at least one of Ge, Cd, In, Sn, Sb, Te, Pb, their oxides and mixtures thereof. The invention is also directed toward noble metal-free nickel catalysts that exhibit both high activity and selectivity to hydrogen generation and carbon monoxide oxidation.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: September 18, 2007
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Symyx Technologies, Inc.
    Inventors: Alfred Hagemeyer, Christopher James Brooks, Raymond E. Carhart, Karin Yaccato, Michael Herrmann
  • Patent number: 7179442
    Abstract: A method and catalysts and fuel processing apparatus for producing a hydrogen-rich gas, such as a hydrogen-rich syngas are disclosed. According to the method a CO-containing gas, such as a syngas, contacts a water gas shift (“WGS”) catalyst, in the presence of water, preferably at a temperature of less than about 450° C. to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a water gas shift catalyst formulated from: a) at least one of Rh, Ni, Pt, their oxides and mixtures thereof, b) at least one of Cu, Ag, Au, their oxides and mixtures thereof; and c) at least one of K, Cs, Sc, Y, Ti, Zr, V, Mo, Re, Fe, Ru, Co, Ir, Pd, Cd, In, Ge, Sn, Pb, Sb, Te, La, Ce, Pr, Nd, Sm, Eu, their oxides and mixtures thereof. Another disclosed catalyst formulation comprises Rh, its oxides or mixtures thereof, Pt, its oxides or mixtures thereof and Ag, its oxides or mixtures thereof.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: February 20, 2007
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Symyx Technologies, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Peter Strasser, Michael Herrmann, Robert K. Grasselli, Christopher James Brooks, Cory Bernard Phillips
  • Publication number: 20070007372
    Abstract: Methods and apparatus for combinatorial (i.e., high-throughput) materials research, such as catalysis research, that involves parallel apparatus for simultaneously effecting mechanical treatments such as grinding, mixing, pressing, crushing, sieving, and/or fractionating of such materials are disclosed. The methods and apparatus are useful for mechanically treating catalysis materials and other solid materials, including without limitation, electronic materials such as phosphors, colorants such as pigments, and pharmaceuticals such as crystalline drugs or drug candidates. The simultaneous protocols and parallel apparatus offer substantial improvements in overall throughput for preparing arrays of materials, such as catalysis materials.
    Type: Application
    Filed: September 11, 2006
    Publication date: January 11, 2007
    Applicant: Symyx Technologies, Inc.
    Inventors: Claus Lugmair, Alfred Hagemeyer, Lynn Van Erden, Anthony Volpe, David Lowe, Yumin Liu
  • Patent number: 7160533
    Abstract: A method and catalysts for producing a hydrogen-rich syngas are disclosed. According to the method a CO-containing gas contacts a water gas shift (WGS) catalyst, optionally in the presence of water, preferably at a temperature of less than about 450° C. to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a water gas shift catalyst formulated from: a) Pt, its oxides or mixtures thereof; b) Ru, its oxides or mixtures thereof; and c) at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Co, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu. Another disclosed catalyst formulation comprises Pt, its oxides or mixtures thereof; Ru, its oxides or mixtures thereof; Co, its oxides or mixtures thereof; and at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu, their oxides and mixtures thereof.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: January 9, 2007
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Symyx Technologies, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Peter Strasser, Robert K. Grasselli, Christopher James Brooks, Cory Bernard Phillips
  • Patent number: 7160534
    Abstract: A method and catalysts and fuel processing apparatus for producing a hydrogen-rich gas, such as a hydrogen-rich syngas are disclosed. According to the method, a CO-containing gas, such as a syngas, contacts a platinum-free ruthenium-cobalt water gas shift (“WGS”) catalyst, in the presence of water and preferably at a temperature of less than about 450° C., to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a platinum-free ruthenium-cobalt water gas shift catalyst formulated from: a) Ru, its oxides or mixtures thereof; b) Co, Mo, their oxides or mixtures thereof; and c) at least one of Li, Na, K, Rb, Cs, Ti, Zr, Cr, Fe, La, Ce, Eu, their oxides and mixtures thereof. The WGS catalyst may be supported on a carrier, such as any one member or a combination of alumina, zirconia, titania, ceria, magnesia, lanthania, niobia, zeolite, perovskite, silica clay, yttria and iron oxide. Fuel processors containing such water gas shift catalysts are also disclosed.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: January 9, 2007
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Symyx Technologies, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Michael Herrmann, Andreas Lesik, Christopher James Brooks, Cory Bernard Phillips
  • Publication number: 20060280677
    Abstract: A method and catalysts and fuel processing apparatus for producing a hydrogen-rich gas, such as a hydrogen-rich syngas are disclosed. According to the method, a CO-containing gas, such as a syngas, contacts a platinum-free ruthenium-cobalt water gas shift (“WGS”) catalyst, in the presence of water and preferably at a temperature of less than about 450° C., to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a platinum-free ruthenium-cobalt water gas shift catalyst formulated from: a) Ru, its oxides or mixtures thereof, b) Co, Mo, their oxides or mixtures thereof, and c) at least one of Li, Na, K, Rb, Cs, Ti, Zr, Cr, Fe, La, Ce, Eu, their oxides and mixtures thereof. The WGS catalyst may be supported on a carrier, such as any one member or a combination of alumina, zirconia, titania, ceria, magnesia, lanthania, niobia, zeolite, perovskite, silica clay, yttria and iron oxide. Fuel processors containing such water gas shift catalysts are also disclosed.
    Type: Application
    Filed: July 10, 2006
    Publication date: December 14, 2006
    Applicants: Honda Giken Kogyo Kabushiki Kaisha, Symyx Technologies, Inc.
    Inventors: Alfred Hagemeyer, Raymond Carhart, Karin Yaccato, Michael Herrmann, Andreas Lesik, Christopher Brooks, Cory Phillips
  • Patent number: 7111802
    Abstract: Methods and apparatus for combinatorial (i.e., high-throughput) materials research, such as catalysis research, that involves parallel apparatus for simultaneously effecting mechanical treatments such as grinding, mixing, pressing, crushing, sieving, and/or fractionating of such materials are disclosed. The methods and apparatus are useful for mechanically treating catalysis materials and other solid materials, including without limitation, electronic materials such as phosphors, colorants such as pigments, and pharmaceuticals such as crystalline drugs or drug candidates. The simultaneous protocols and parallel apparatus offer substantial improvements in overall throughput for preparing arrays of materials, such as catalysis materials.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: September 26, 2006
    Assignee: Symyx Technologies, Inc.
    Inventors: Claus G. Lugmair, Alfred Hagemeyer, Lynn Van Erden, Anthony F. Volpe, Jr., David M. Lowe, Yumin Liu
  • Publication number: 20060194694
    Abstract: A method and catalysts for producing a hydrogen-rich syngas are disclosed. According to the method a CO-containing gas contacts a water gas shift (WGS) catalyst, optionally in the presence of water, preferably at a temperature of less than about 450° C. to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a water gas shift catalyst formulated from: a) Pt, its oxides or mixtures thereof; b) Ru, its oxides or mixtures thereof; and c) at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Co, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu. Another disclosed catalyst formulation comprises Pt, its oxides or mixtures thereof; Ru, its oxides or mixtures thereof; Co, its oxides or mixtures thereof; and at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu, their oxides and mixtures thereof.
    Type: Application
    Filed: April 28, 2006
    Publication date: August 31, 2006
    Applicants: Honda Giken Kogyo Kabushiki Kaisha, Symyx Technologies, Inc.
    Inventors: Alfred Hagemeyer, Raymond Carhart, Karin Yaccato, Peter Strasser, Robert Grasselli, Christopher Brooks, Cory Phillips
  • Patent number: 6987200
    Abstract: The invention relates to a method for producing a catalyst containing one or several metals from the group of metals comprising the sub-groups Ib and VIIIb of the periodic table on porous support particles, characterized by a first step in which one or several precursors from the group of compounds of metals from sub-groups Ib and VIIIb of the periodic table is or are applied to a porous support, and a second step in which the porous, preferably nanoporous support to which at least one precursor has been applied is treated with at least one reduction agent, to obtain the metal nanoparticles produced in situ in the pores of said support.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: January 17, 2006
    Assignee: Celanese Chemicals Europe GmbH
    Inventors: Alfred Hagemeyer, Uwe Dingerdissen, Klaus Kuhlein, Andreas Manz, Roland Fischer
  • Patent number: 6971593
    Abstract: Methods and apparatus for combinatorial (i.e., high-throughput) materials research, such as catalysis research, that involves parallel apparatus for simultaneously effecting mechanical treatments such as grinding, mixing, pressing, crushing, sieving, and/or fractionating of such materials are disclosed. The methods and apparatus are useful for mechanically treating catalysis materials and other solid materials, including without limitation, electronic materials such as phosphors, colorants such as pigments, and pharmaceuticals such as crystalline drugs or drug candidates. The simultaneous protocols and parallel apparatus offer substantial improvements in overall throughput for preparing arrays of materials, such as catalysis materials.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: December 6, 2005
    Assignee: Symyx Technologies, Inc.
    Inventors: Claus Lugmair, Alfred Hagemeyer, Lynn Van Erden, Anthony F. Volpe, Jr., David M. Lowe, Yumin Liu