Patents by Inventor Alfred Rieder

Alfred Rieder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190242738
    Abstract: A Coriolis mass flow measuring device and/or density measuring device, comprising: at least two measuring tubes which extend mirror symmetrically to a first mirror plane; at least one exciter mechanism and at least one sensor arrangement for exciting and registering measuring tube oscillations; two terminally located collectors for joining the measuring tubes; a support body for connecting the collectors; and a number of plate-shaped couplers for pairwise connecting of the measuring tubes for forming an oscillator. The measuring tube centerlines of the measuring tubes have two oppositely bent sections and an intermediately lying straight section. The second bent section is arranged on the side of the straight section away from the second mirror plane.
    Type: Application
    Filed: May 24, 2016
    Publication date: August 8, 2019
    Inventors: Hao ZHU, Alfred RIEDER, Gerhard ECKERT, Ennio BITTO
  • Patent number: 10371553
    Abstract: transducer apparatus comprises a transducer housing, a tube, a temperature sensor as well as a temperature sensor. The tube is arranged within a cavity of the transducer housing, in such a manner that an intermediate space is formed between a wall of the transducer housing facing the cavity inner surface and an outer surface of a wall of the tube facing the cavity. Furthermore, the tube is adapted to guide a fluid in its lumen, in such a manner that an inner surface of the wall of the tube facing the lumen is contacted by fluid guided in the lumen.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: August 6, 2019
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventors: Alfred Rieder, Hao Zhu, Ennio Bitto, Gerhard Eckert, Josef Hubensteiner, Michael Wiesmann, Yaoing Lin
  • Patent number: 10309866
    Abstract: The method serves for monitoring and/or checking a pressure device having a lumen surrounded by a wall for conveying and/or storing a fluid. To this end, the method comprises a step of registering both a strain of a first wall segment as well as also a strain of at least a second wall segment spaced from the first wall segment, for ascertaining a strain deviation value representing a difference between the strain of the first wall segment and the strain of the second wall segment, as well as a step of using the strain deviation value for ascertaining damage to the wall, as a result of plastic deformation of the wall and/or as a result of wear of the wall.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: June 4, 2019
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventors: Hao Zhu, Alfred Rieder, Holger Bernhard
  • Publication number: 20190162702
    Abstract: A measuring transducer includes a support body, a curved oscillatable measuring tube, an electrodynamic exciter, at least one sensor for registering oscillations of the measuring tube, and an operating circuit. The measuring tube has first and second bending oscillation modes, which are mirror symmetric to a measuring tube transverse plane and have first and second media density dependent eigenfrequencies f1, f3 with f3>f1. The measuring tube has a peak secant with an oscillation node in the second mirror symmetric bending oscillation mode. The operating circuit is adapted to drive the exciter conductor loop with a signal exciting the second mirror symmetric bending oscillation mode. The exciter conductor loop has an ohmic resistance R? and a mode dependent mutual induction reactance Rg3 which depends on the position of the exciter.
    Type: Application
    Filed: April 27, 2017
    Publication date: May 30, 2019
    Inventors: Alfred Rieder, Gerhard Eckert, Ennio Bitto, Hao Zhu
  • Publication number: 20190154485
    Abstract: A method for determining density and/or mass flow of a compressible medium with a measuring transducer of vibration-type having at least two oscillators, each including a pair of measuring tubes, wherein the pairs of measuring tubes are arranged for parallel flow, wherein the two oscillators have mutually independent oscillator oscillations with mutually differing eigenfrequencies for corresponding oscillation modes. The method includes steps of determining the values of the eigenfrequencies of at least two different oscillator oscillations, determining at least two preliminary density measured values based on the values of the eigenfrequencies, and determining a correction term for one of the preliminary density measured values and/or for a preliminary measured value of flow based on the preliminary density measured values and the values of the eigenfrequencies.
    Type: Application
    Filed: May 18, 2017
    Publication date: May 23, 2019
    Inventors: Hao Zhu, Alfred Rieder
  • Publication number: 20190154486
    Abstract: A method serves for operating a measuring transducer of vibration-type having at least two oscillators, each of which is formed by a pair of measuring tubes, wherein the pairs of measuring tubes are arranged for parallel flow, wherein the two oscillators have mutually independent oscillator oscillations with mutually differing eigenfrequencies for corresponding oscillation modes. The method includes steps of determining a first value of a primary measurement variable, or of a variable derived therefrom, using the first oscillator, determining a second value of the primary measurement variable, or of a variable derived therefrom, using the second oscillator, checking an actual ratio between the first value and the second value by comparison with an expected ratio between the first value and the second value, and outputting a signal when the actual ratio does not correspond to the expected ratio.
    Type: Application
    Filed: May 18, 2017
    Publication date: May 23, 2019
    Inventors: Hao Zhu, Alfred Rieder
  • Patent number: 10269336
    Abstract: An arrangement comprising an ultrasonic transducer and a damping element with a longitudinal axis, which damping element connects the ultrasonic transducer with a housing- or measuring tube wall. The transducer has an end piece with a medium-contacting surface, from which ultrasonic signals are transferred into a gaseous or liquid medium. The damping element has at least two annular grooves and an annular mass segment arranged therebetween, characterized in that the damping element has a first eigenfrequency, in which the annular mass segment executes an axial movement parallel to the longitudinal direction of the damping element. This first eigenfrequency is the highest eigenfrequency, in the case that a plurality of eigenfrequencies are present, in the case of which the annular mass segment executes an axial movement parallel to the longitudinal direction of the damping element, and the damping element has a second eigenfrequency, in which the annular mass segment executes a rotary movement.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: April 23, 2019
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventors: Yaoying Lin, Alfred Rieder, Wolfgang Drahm, Michal Bezdek, Pierre Ueberschlag
  • Patent number: 10234338
    Abstract: A transducer apparatus comprises a transducer housing, a tube as well as a temperature sensor. The tube is arranged within a cavity of the transducer housing, in such a manner that an intermediate space is formed between a wall of the transducer housing facing the cavity inner surface and an outer surface of a wall of the tube facing the cavity. The tube is adapted to guide a fluid in its lumen, in such a manner that an inner surface of the wall of the tube facing the lumen is contacted by fluid guided in the lumen.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: March 19, 2019
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventors: Alfred Rieder, Hao Zhu, Michael Wiesmann
  • Publication number: 20180231411
    Abstract: The invention relates to a method for ascertaining a physical parameter of a gas using a measuring transducer having a measuring tube for conveying the gas, wherein the measuring tube is excitable to execute bending oscillations of different modes and eigenfrequencies, the method includes: ascertaining the eigenfrequency of the f1-mode and f3-mode; ascertaining preliminary density values for the gas based on the eigenfrequencies of the f1-mode and f3-mode; ascertaining a value for the velocity of sound of the gas, and/or, dependent on the velocity of sound and the eigenfrequency of a mode, at least one correcting term and/or density error for the preliminary density value; and/or a correcting term for a preliminary mass flow value for determining a corrected mass flow measured value based on the first preliminary density value, the second preliminary density value, the eigenfrequencies of the f1-mode and f3-mode.
    Type: Application
    Filed: July 26, 2016
    Publication date: August 16, 2018
    Inventors: Hao Zhu, Alfred Rieder, Gerhard Eckert
  • Publication number: 20180149571
    Abstract: The viscometer provides a viscosity value (X0) which represents the viscosity of a fluid flowing in a pipe connected thereto. It comprises a vibratory transducer with at least one flow tube for conducting the fluid, which communicates with the pipe. Driven by an excitation assembly, the flow tube is vibrated so that friction forces are produced in the fluid. The viscometer further includes meter electronics which feed an excitation current (iexc) into the excitation assembly. By means of the meter electronics, a first internal intermediate value (X1) is formed, which corresponds with the excitation current (iexc) and thus represents the friction forces acting in the fluid. According to the invention, a second internal intermediate value (X2), representing inhomogeneities in the fluid, is generated in the meter electronics, which then determine the viscosity value (X0) using the two intermediate values (X1, X2).
    Type: Application
    Filed: January 26, 2018
    Publication date: May 31, 2018
    Inventors: Wolfgang DRAHM, Alfred RIEDER
  • Publication number: 20180075832
    Abstract: An arrangement, comprising a housing wall, an ultrasonic transducer and a damping element with a longitudinal axis, which damping element connects the ultrasonic transducer with the housing wall. The ultrasonic transducer has an end piece with a medium-contacting surface, from which ultrasonic signals are transferred into a gaseous or liquid medium. The damping element is provided for body sound damping between the ultrasonic transducer and the housing wall, and wherein the damping element has at least one, especially a number of, oscillatory nodes, characterized in that there is arranged between the damping element and the housing wall at least a first sealing ring, which is positioned at a height of an oscillatory node.
    Type: Application
    Filed: March 24, 2016
    Publication date: March 15, 2018
    Inventors: Yaoying Lin, Alfred Rieder, Wolfgang Drahm, Michal Bezdek, Pierre Ueberschlag
  • Publication number: 20180061390
    Abstract: An arrangement comprising an ultrasonic transducer and a damping element with a longitudinal axis, which damping element connects the ultrasonic transducer with a housing- or measuring tube wall. The transducer has an end piece with a medium-contacting surface, from which ultrasonic signals are transferred into a gaseous or liquid medium. The damping element has at least two annular grooves and an annular mass segment arranged therebetween, characterized in that the damping element has a first eigenfrequency, in which the annular mass segment executes an axial movement parallel to the longitudinal direction of the damping element. This first eigenfrequency is the highest eigenfrequency, in the case that a plurality of eigenfrequencies are present, in the case of which the annular mass segment executes an axial movement parallel to the longitudinal direction of the damping element, and the damping element has a second eigenfrequency, in which the annular mass segment executes a rotary movement.
    Type: Application
    Filed: February 15, 2016
    Publication date: March 1, 2018
    Inventors: Yaoying LIN, Alfred RIEDER, Wolfgang DRAHM, Michal BEZDEK, Pierre UEBERSCHLAG
  • Publication number: 20180058893
    Abstract: A measuring system comprises: a measuring transducer; transmitter electronics; at least one measuring tube; and at least one oscillation exciter. The transmitter electronics delivers a driver signal for the at least one oscillation exciter, and for feeding electrical, excitation power into the at least one oscillation exciter. The driver signal, has a sinusoidal signal component which corresponds to an instantaneous eigenfrequency, and in which the at least one measuring tube can execute, or executes, eigenoscillations about a resting position. The eigenoscillations have an oscillation node and in the region of the wanted, oscillatory length exactly one oscillatory antinode. The driver signal has, a sinusoidal signal component with a signal frequency, which deviates from each instantaneous eigenfrequency of each natural mode of oscillation of the at least one measuring tube, in each case, by more than 1 Hz and/or by more than 1% of said eigenfrequency.
    Type: Application
    Filed: October 26, 2017
    Publication date: March 1, 2018
    Inventors: Wolfgang DRAHM, Hao ZHU, Alfred RIEDER, Michael WIESMANN, Patrick OUDOIRE
  • Publication number: 20170356777
    Abstract: A Coriolis mass flow measuring device 100 includes four bent measuring tubes 110a, 110b, 110, 110dd, two actuator arrangements 140a, 140c, and two sensor arrangements 142a-1, 142a-2, 142c-1, 142c-2, wherein all four measuring tubes (110a, 110b, 110c, 110d) are joined inlet end and outlet end with collectors (120), wherein the measuring tubes are connected inlet end and outlet end pairwise with node plates 132a, 132c, 134a, 134c to form oscillators, wherein the actuator arrangements 140a, 140c are adapted to excite bending oscillation wanted modes between the two measuring tubes of an oscillator, wherein the first oscillator and the second oscillator have bending oscillation wanted modes with first and second wanted mode eigenfrequencies (f11, f12), wherein the magnitude of the difference of the wanted mode eigenfrequencies of the two oscillators (|f11?f12|) amounts to at least 0.1 times, for example, at least 0.2 times and especially at least 0.
    Type: Application
    Filed: November 18, 2015
    Publication date: December 14, 2017
    Inventors: Hao Zhu, Alfred Rieder
  • Publication number: 20170356833
    Abstract: A method is provided for measuring density of a fluid by means of at least one at least sectionally curved measuring tube. The measuring tube is adapted to be flowed through by the fluid and concurrently to be caused to vibrate over a wanted oscillatory length, namely a tube length measured from a first tube end to a second tube end, a length which is greater than a minimum separation of the second tube end from the first tube end. According to the invention, among other things, also a tilt measured value representing an inclination of the at least one measuring tube in the static resting position relative to a local acceleration of gravity is ascertained, in such a manner that such represents an angle of intersection between a direction vector of an imaginary first reference axis (y-axis) and a direction vector of an imaginary second reference axis (g-axis).
    Type: Application
    Filed: November 18, 2015
    Publication date: December 14, 2017
    Inventors: Gerhard Eckert, Alfred Rieder, Hao Zhu
  • Publication number: 20170350742
    Abstract: A Coriolis mass flow measuring device and/or density measuring device (100) includes two bent measuring tubes (110a, 110b), which extend mirror symmetrically to a first mirror plane between the measuring tubes, an actuator arrangement (140) and at least one sensor arrangement (142a, 142b); at the inlet end and at the outlet end, in each case, a collector (120a, 120a), with which the measuring tubes are joined, wherein the collectors (120a, 120b) each fulfill the functionality of a node plate; a support body (124), which connects the collectors (120a, 120b) rigidly with one another; and inlet end and outlet end, in each case, at least one plate-shaped coupler (132a, 132b, 134a, 134b), which connect the measuring tubes pairwise with one another, in order to form an oscillator, wherein the couplers have tube openings for measuring tubes, wherein the measuring tubes are connected at least sectionally with the couplers, wherein inlet end and outlet end, in each case, at least one coupler (132a, 132b, 134a, 134b) h
    Type: Application
    Filed: November 18, 2015
    Publication date: December 7, 2017
    Inventors: Hao Zhu, Alfred Rieder, Ennio Bitto
  • Publication number: 20170343404
    Abstract: A measuring transducer for registering and/or monitoring at least one process variable of a flowable medium guided in a pipeline, which at least includes: a housing module, which is mechanically coupled with the pipeline via an inlet end and an outlet end, and a sensor module having at least one measuring tube held oscillatably at least partially in the housing module and caused, at least at times, to oscillate. The at least one component of the housing module and/or of the sensor module is manufactured by means of a generative method and method for manufacturing at least one component of a measuring transducer, which method includes manufacturing the at least one component by means of a primary forming process, especially by means of a layered applying and/or melting-on of a powder, especially a metal powder, based on a digital data set, which gives at least the shape and/or the material and/or the structure of the at least one component.
    Type: Application
    Filed: November 9, 2015
    Publication date: November 30, 2017
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Martin Josef Anklin, Gerhard Eckert, Christian Schutze, Ennio Bitto, Christof Huber, Claude Hollinger, Alfred Rieder, Michael Kirst
  • Publication number: 20170261474
    Abstract: A measuring transducer comprises two flow dividers having, in each case, two tubular chambers separated from one another and adapted for guiding in- and out flowing fluid, of which each has a chamber floor, in which are formed, in each case, two mutually spaced flow openings communicating with a lumen of the chamber, and as well as a tube arrangement having at least four measuring tubes connected to the flow dividers for guiding flowing fluid with parallel flow. Moreover, the measuring transducer comprises an electromechanical exciter mechanism for exciting mechanical oscillations of the measuring tubes as well as a sensor arrangement for registering oscillatory movements of the measuring tubes and for generating at least two oscillation measurement signals representing oscillations of at least one of the measuring tubes.
    Type: Application
    Filed: November 3, 2015
    Publication date: September 14, 2017
    Inventors: Hao Zhu, Alfred Rieder, Wolfgang Drahm, Michael Kirst
  • Publication number: 20170074730
    Abstract: A transducer apparatus comprises a transducer housing, a tube as well as a temperature sensor. The tube is arranged within a cavity of the transducer housing, in such a manner that an intermediate space is formed between a wall of the transducer housing facing the cavity inner surface and an outer surface of a wall of the tube facing the cavity. The tube is adapted to guide a fluid in its lumen, in such a manner that an inner surface of the wall of the tube facing the lumen is contacted by fluid guided in the lumen.
    Type: Application
    Filed: February 23, 2015
    Publication date: March 16, 2017
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Hao Zhu, Michael Wiesmann
  • Publication number: 20170074701
    Abstract: transducer apparatus comprises a transducer housing, a tube, a temperature sensor as well as a temperature sensor. The tube is arranged within a cavity of the transducer housing, in such a manner that an intermediate space is formed between a wall of the transducer housing facing the cavity inner surface and an outer surface of a wall of the tube facing the cavity. Furthermore, the tube is adapted to guide a fluid in its lumen, in such a manner that an inner surface of the wall of the tube facing the lumen is contacted by fluid guided in the lumen.
    Type: Application
    Filed: February 23, 2015
    Publication date: March 16, 2017
    Inventors: Alfred Rieder, Hao Zhu, Ennio Bitto, Gerhard Eckert, Josef Hubensteiner, Michael Wiesmann, Yaoing Lin