Patents by Inventor Alfred T. Watson

Alfred T. Watson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10831504
    Abstract: A method and circuit arrangement provide support for a hybrid pipeline that dynamically switches between out-of-order and in-order modes. The hybrid pipeline may selectively execute instructions from at least one instruction stream that require the high performance capabilities provided by out-of-order processing in the out-of-order mode. The hybrid pipeline may also execute instructions that have strict power requirements in the in-order mode where the in-order mode conserves more power compared to the out-of-order mode. Each stage in the hybrid pipeline may be activated and fully functional when the hybrid pipeline is in the out-of-order mode. However, stages in the hybrid pipeline not used for the in-order mode may be deactivated and bypassed by the instructions when the hybrid pipeline dynamically switches from the out-of-order mode to the in-order mode. The deactivated stages may then be reactivated when the hybrid pipeline dynamically switches from the in-order mode to the out-of-order mode.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: November 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Miguel Comparan, Andrew D. Hilton, Hans M. Jacobson, Brian M. Rogers, Robert A. Shearer, Ken V. Vu, Alfred T. Watson, III
  • Publication number: 20190034208
    Abstract: A method and circuit arrangement provide support for a hybrid pipeline that dynamically switches between out-of-order and in-order modes. The hybrid pipeline may selectively execute instructions from at least one instruction stream that require the high performance capabilities provided by out-of-order processing in the out-of-order mode. The hybrid pipeline may also execute instructions that have strict power requirements in the in-order mode where the in-order mode conserves more power compared to the out-of-order mode. Each stage in the hybrid pipeline may be activated and fully functional when the hybrid pipeline is in the out-of-order mode. However, stages in the hybrid pipeline not used for the in-order mode may be deactivated and bypassed by the instructions when the hybrid pipeline dynamically switches from the out-of-order mode to the in-order mode. The deactivated stages may then be reactivated when the hybrid pipeline dynamically switches from the in-order mode to the out-of-order mode.
    Type: Application
    Filed: October 2, 2018
    Publication date: January 31, 2019
    Inventors: Miguel Comparan, Andrew D. Hilton, Hans M. Jacobson, Brian M. Rogers, Robert A. Shearer, Ken V. Vu, Alfred T. Watson, III
  • Patent number: 10114652
    Abstract: A method and circuit arrangement provide support for a hybrid pipeline that dynamically switches between out-of-order and in-order modes. The hybrid pipeline may selectively execute instructions from at least one instruction stream that require the high performance capabilities provided by out-of-order processing in the out-of-order mode. The hybrid pipeline may also execute instructions that have strict power requirements in the in-order mode where the in-order mode conserves more power compared to the out-of-order mode. Each stage in the hybrid pipeline may be activated and fully functional when the hybrid pipeline is in the out-of-order mode. However, stages in the hybrid pipeline not used for the in-order mode may be deactivated and bypassed by the instructions when the hybrid pipeline dynamically switches from the out-of-order mode to the in-order mode. The deactivated stages may then be reactivated when the hybrid pipeline dynamically switches from the in-order mode to the out-of-order mode.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: October 30, 2018
    Assignee: International Business Machines Corporation
    Inventors: Miguel Comparan, Andrew D. Hilton, Hans M. Jacobson, Brian M. Rogers, Robert A. Shearer, Ken V. Vu, Alfred T. Watson, III
  • Patent number: 9971713
    Abstract: A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time and supports DMA functionality allowing for parallel processing message-passing.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: May 15, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Sameh Asaad, Ralph E. Bellofatto, Michael A. Blocksome, Matthias A. Blumrich, Peter Boyle, Jose R. Brunheroto, Dong Chen, Chen-Yong Cher, George L. Chiu, Norman Christ, Paul W. Coteus, Kristan D. Davis, Gabor J. Dozsa, Alexandre E. Eichenberger, Noel A. Eisley, Matthew R. Ellavsky, Kahn C. Evans, Bruce M. Fleischer, Thomas W. Fox, Alan Gara, Mark E. Giampapa, Thomas M. Gooding, Michael K. Gschwind, John A. Gunnels, Shawn A. Hall, Rudolf A. Haring, Philip Heidelberger, Todd A. Inglett, Brant L. Knudson, Gerard V. Kopcsay, Sameer Kumar, Amith R. Mamidala, James A. Marcella, Mark G. Megerian, Douglas R. Miller, Samuel J. Miller, Adam J. Muff, Michael B. Mundy, John K. O'Brien, Kathryn M. O'Brien, Martin Ohmacht, Jeffrey J. Parker, Ruth J. Poole, Joseph D. Ratterman, Valentina Salapura, David L. Satterfield, Robert M. Senger, Burkhard Steinmacher-Burow, William M. Stockdell, Craig B. Stunkel, Krishnan Sugavanam, Yutaka Sugawara, Todd E. Takken, Barry M. Trager, James L. Van Oosten, Charles D. Wait, Robert E. Walkup, Alfred T. Watson, Robert W. Wisniewski, Peng Wu
  • Publication number: 20160224351
    Abstract: A method and circuit arrangement provide support for a hybrid pipeline that dynamically switches between out-of-order and in-order modes. The hybrid pipeline may selectively execute instructions from at least one instruction stream that require the high performance capabilities provided by out-of-order processing in the out-of-order mode. The hybrid pipeline may also execute instructions that have strict power requirements in the in-order mode where the in-order mode conserves more power compared to the out-of-order mode. Each stage in the hybrid pipeline may be activated and fully functional when the hybrid pipeline is in the out-of-order mode. However, stages in the hybrid pipeline not used for the in-order mode may be deactivated and bypassed by the instructions when the hybrid pipeline dynamically switches from the out-of-order mode to the in-order mode. The deactivated stages may then be reactivated when the hybrid pipeline dynamically switches from the in-order mode to the out-of-order mode.
    Type: Application
    Filed: April 12, 2016
    Publication date: August 4, 2016
    Inventors: Miguel Comparan, Andrew D. Hilton, Hans M. Jacobson, Brian M. Rogers, Robert A. Shearer, Ken V. Vu, Alfred T. Watson
  • Patent number: 9354884
    Abstract: A method and circuit arrangement provide support for a hybrid pipeline that dynamically switches between out-of-order and in-order modes. The hybrid pipeline may selectively execute instructions from at least one instruction stream that require the high performance capabilities provided by out-of-order processing in the out-of-order mode. The hybrid pipeline may also execute instructions that have strict power requirements in the in-order mode where the in-order mode conserves more power compared to the out-of-order mode. Each stage in the hybrid pipeline may be activated and fully functional when the hybrid pipeline is in the out-of-order mode. However, stages in the hybrid pipeline not used for the in-order mode may be deactivated and bypassed by the instructions when the hybrid pipeline dynamically switches from the out-of-order mode to the in-order mode. The deactivated stages may then be reactivated when the hybrid pipeline dynamically switches from the in-order mode to the out-of-order mode.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 31, 2016
    Assignee: International Business Machines Corporation
    Inventors: Miguel Comparan, Andrew D. Hilton, Hans M. Jacobson, Brian M. Rogers, Robert A. Shearer, Ken V. Vu, Alfred T. Watson, III
  • Publication number: 20160011996
    Abstract: A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time and supports DMA functionality allowing for parallel processing message-passing.
    Type: Application
    Filed: April 30, 2015
    Publication date: January 14, 2016
    Inventors: Sameh Asaad, Ralph E. Bellofatto, Michael A. Blocksome, Matthias A. Blumrich, Peter Boyle, Jose R. Brunheroto, Dong Chen, Chen-Yong Cher, George L. Chiu, Norman Christ, Paul W. Coteus, Kristan D. Davis, Gabor J. Dozsa, Alexandre E. Eichenberger, Noel A. Eisley, Matthew R. Ellavsky, Kahn C. Evans, Bruce M. Fleischer, Thomas W. Fox, Alan Gara, Mark E. Giampapa, Thomas M. Gooding, Michael K. Gschwind, John A. Gunnels, Shawn A. Hall, Rudolf A. Haring, Philip Heidelberger, Todd A. Inglett, Brant L. Knudson, Gerard V. Kopcsay, Sameer Kumar, Amith R. Mamidala, James A. Marcella, Mark G. Megerian, Douglas R. Miller, Samuel J. Miller, Adam J. Muff, Michael B. Mundy, John K. O'Brien, Kathryn M. O'Brien, Martin Ohmacht, Jeffrey J. Parker, Ruth J. Poole, Joseph D. Ratterman, Valentina Salapura, David L. Satterfield, Robert M. Senger, Burkhard Steinmacher-Burow, William M. Stockdell, Craig B. Stunkel, Krishnan Sugavanam, Yutaka Sugawara, Todd E. Takken, Barry M. Trager, James L. Van Oosten, Charles D. Wait, Robert E. Walkup, Alfred T. Watson, Robert W. Wisniewski, Peng Wu
  • Patent number: 9092347
    Abstract: A method and apparatus dynamically allocates and deallocates a portion of a cache for use as a dedicated local storage. Cache lines may be dynamically allocated and deallocated for inclusion in the dedicated local storage. Cache entries that are included in the dedicated local storage may not be evicted or invalidated. Additionally, coherence is not maintained between the cache entries that are included in the dedicated local storage and the backing memory. A load instruction may be configured to allocate, e.g., lock, a portion of the data cache for inclusion in the dedicated local storage and load data into the dedicated local storage. A load instruction may be configured to read data from the dedicated local storage and to deallocate, e.g., unlock, a portion of the data cache that was included in the dedicated local storage.
    Type: Grant
    Filed: November 25, 2012
    Date of Patent: July 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Miguel Comparan, Russell D. Hoover, Robert A. Shearer, Alfred T. Watson, III
  • Patent number: 9081501
    Abstract: A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC).
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: July 14, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sameh Asaad, Ralph E. Bellofatto, Michael A. Blocksome, Matthias A. Blumrich, Peter Boyle, Jose R. Brunheroto, Dong Chen, Chen-Yong Cher, George L. Chiu, Norman Christ, Paul W. Coteus, Kristan D. Davis, Gabor J. Dozsa, Alexandre E. Eichenberger, Noel A. Eisley, Matthew R. Ellavsky, Kahn C. Evans, Bruce M. Fleischer, Thomas W. Fox, Alan Gara, Mark E. Giampapa, Thomas M. Gooding, Michael K. Gschwind, John A. Gunnels, Shawn A. Hall, Rudolf A. Haring, Philip Heidelberger, Todd A. Inglett, Brant L. Knudson, Gerard V. Kopcsay, Sameer Kumar, Amith R. Mamidala, James A. Marcella, Mark G. Megerian, Douglas R. Miller, Samuel J. Miller, Adam J. Muff, Michael B. Mundy, John K. O'Brien, Kathryn M. O'Brien, Martin Ohmacht, Jeffrey J. Parker, Ruth J. Poole, Joseph D. Ratterman, Valentina Salapura, David L. Satterfield, Robert M. Senger, Brian Smith, Burkhard Steinmacher-Burow, William M. Stockdell, Craig B. Stunkel, Krishnan Sugavanam, Yutaka Sugawara, Todd E. Takken, Barry M. Trager, James L. Van Oosten, Charles D. Wait, Robert E. Walkup, Alfred T. Watson, Robert W. Wisniewski, Peng Wu
  • Patent number: 9053037
    Abstract: A method and apparatus dynamically allocates and deallocates a portion of a cache for use as a dedicated local storage. Cache lines may be dynamically allocated and deallocated for inclusion in the dedicated local storage. Cache entries that are included in the dedicated local storage may not be evicted or invalidated. Additionally, coherence is not maintained between the cache entries that are included in the dedicated local storage and the backing memory. A load instruction may be configured to allocate, e.g., lock, a portion of the data cache for inclusion in the dedicated local storage and load data into the dedicated local storage. A load instruction may be configured to read data from the dedicated local storage and to deallocate, e.g., unlock, a portion of the data cache that was included in the dedicated local storage.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: June 9, 2015
    Assignee: International Business Machines Corporation
    Inventors: Miguel Comparan, Russell D. Hoover, Robert A. Shearer, Alfred T. Watson, III
  • Patent number: 9021237
    Abstract: A method and circuit arrangement utilize a low latency variable transfer network between the register files of multiple processing cores in a multi-core processor chip to support fine grained parallelism of virtual threads across multiple hardware threads. The communication of a variable over the variable transfer network may be initiated by a move from a local register in a register file of a source processing core to a variable register that is allocated to a destination hardware thread in a destination processing core, so that the destination hardware thread can then move the variable from the variable register to a local register in the destination processing core.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Miguel Comparan, Russell D. Hoover, Robert A. Shearer, Alfred T. Watson, III
  • Patent number: 8954973
    Abstract: A method and apparatus for transferring architected state bypasses system memory by directly transmitting architected state between processor cores over a dedicated interconnect. The transfer may be performed by state transfer interface circuitry with or without software interaction. The architected state for a thread may be transferred from a first processing core to a second processing core when the state transfer interface circuitry detects an error that prevents proper execution of the thread corresponding to the architected state. A program instruction may be used to initiate the transfer of the architected state for the thread to one or more other threads in order to parallelize execution of the thread or perform load balancing between multiple processor cores by distributing processing of multiple threads.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: February 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Miguel Comparan, Russell D. Hoover, Robert A. Shearer, Alfred T. Watson, III
  • Patent number: 8949836
    Abstract: A method and apparatus for transferring architected state bypasses system memory by directly transmitting architected state between processor cores over a dedicated interconnect. The transfer may be performed by state transfer interface circuitry with or without software interaction. The architected state for a thread may be transferred from a first processing core to a second processing core when the state transfer interface circuitry detects an error that prevents proper execution of the thread corresponding to the architected state. A program instruction may be used to initiate the transfer of the architected state for the thread to one or more other threads in order to parallelize execution of the thread or perform load balancing between multiple processor cores by distributing processing of multiple threads.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Miguel Comparan, Russell D. Hoover, Robert A. Shearer, Alfred T. Watson, III
  • Patent number: 8856602
    Abstract: A method and circuit arrangement utilize scan logic disposed on a multi-core processor integrated circuit device or chip to perform internal voting-based built in self test (BIST) of the chip. Test patterns are generated internally on the chip and communicated to the scan chains within multiple processing cores on the chip. Test results output by the scan chains are compared with one another on the chip, and majority voting is used to identify outlier test results that are indicative of a faulty processing core. A bit position in a faulty test result may be used to identify a faulty latch in a scan chain and/or a faulty functional unit in the faulty processing core, and a faulty processing core and/or a faulty functional unit may be automatically disabled in response to the testing.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey D. Brown, Miguel Comparan, Robert A. Shearer, Alfred T. Watson, III
  • Publication number: 20140281402
    Abstract: A method and circuit arrangement provide support for a hybrid pipeline that dynamically switches between out-of-order and in-order modes. The hybrid pipeline may selectively execute instructions from at least one instruction stream that require the high performance capabilities provided by out-of-order processing in the out-of-order mode. The hybrid pipeline may also execute instructions that have strict power requirements in the in-order mode where the in-order mode conserves more power compared to the out-of-order mode. Each stage in the hybrid pipeline may be activated and fully functional when the hybrid pipeline is in the out-of-order mode. However, stages in the hybrid pipeline not used for the in-order mode may be deactivated and bypassed by the instructions when the hybrid pipeline dynamically switches from the out-of-order mode to the in-order mode. The deactivated stages may then be reactivated when the hybrid pipeline dynamically switches from the in-order mode to the out-of-order mode.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: International Business Machines Corporation
    Inventors: Miguel Comparan, Andrew D. Hilton, Hans M. Jacobson, Brian M. Rogers, Robert A. Shearer, Ken V. Vu, Alfred T. Watson, III
  • Patent number: 8560924
    Abstract: Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: October 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Bruce M. Fleischer, Thomas W. Fox, Charles D. Wait, Adam J. Muff, Alfred T. Watson, III
  • Publication number: 20130159669
    Abstract: A method and circuit arrangement utilize a low latency variable transfer network between the register files of multiple processing cores in a multi-core processor chip to support fine grained parallelism of virtual threads across multiple hardware threads. The communication of a variable over the variable transfer network may be initiated by a move from a local register in a register file of a source processing core to a variable register that is allocated to a destination hardware thread in a destination processing core, so that the destination hardware thread can then move the variable from the variable register to a local register in the destination processing core.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Miguel Comparan, Russell D. Hoover, Robert A. Shearer, Alfred T. Watson, III
  • Publication number: 20130159799
    Abstract: A method and circuit arrangement utilize scan logic disposed on a multi-core processor integrated circuit device or chip to perform internal voting-based built in self test (BIST) of the chip. Test patterns are generated internally on the chip and communicated to the scan chains within multiple processing cores on the chip. Test results output by the scan chains are compared with one another on the chip, and majority voting is used to identify outlier test results that are indicative of a faulty processing core. A bit position in a faulty test result may be used to identify a faulty latch in a scan chain and/or a faulty functional unit in the faulty processing core, and a faulty processing core and/or a faulty functional unit may be automatically disabled in response to the testing.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey D. Brown, Miguel Comparan, Robert A. Shearer, Alfred T. Watson, III
  • Publication number: 20120254877
    Abstract: A method and apparatus for transferring architected state bypasses system memory by directly transmitting architected state between processor cores over a dedicated interconnect. The transfer may be performed by state transfer interface circuitry with or without software interaction. The architected state for a thread may be transferred from a first processing core to a second processing core when the state transfer interface circuitry detects an error that prevents proper execution of the thread corresponding to the architected state. A program instruction may be used to initiate the transfer of the architected state for the thread to one or more other threads in order to parallelize execution of the thread or perform load balancing between multiple processor cores by distributing processing of multiple threads.
    Type: Application
    Filed: April 1, 2011
    Publication date: October 4, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Miguel Comparan, Russell D. Hoover, Robert A. Shearer, Alfred T. Watson, III
  • Publication number: 20120254548
    Abstract: A method and apparatus dynamically allocates and deallocates a portion of a cache for use as a dedicated local storage. Cache lines may be dynamically allocated and deallocated for inclusion in the dedicated local storage. Cache entries that are included in the dedicated local storage may not be evicted or invalidated. Additionally, coherence is not maintained between the cache entries that are included in the dedicated local storage and the backing memory. A load instruction may be configured to allocate, e.g., lock, a portion of the data cache for inclusion in the dedicated local storage and load data into the dedicated local storage. A load instruction may be configured to read data from the dedicated local storage and to deallocate, e.g., unlock, a portion of the data cache that was included in the dedicated local storage.
    Type: Application
    Filed: April 4, 2011
    Publication date: October 4, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Miguel Comparan, Russell D. Hoover, Robert A. Shearer, Alfred T. Watson, III