Patents by Inventor Alfredo BISMUTO

Alfredo BISMUTO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11956341
    Abstract: An electronic device may include wireless circuitry clocked using an electro-optical phase-locked loop (OPLL) having primary and secondary lasers. A frequency-locked loop (FLL) path and a phase-locked loop (PLL) path may couple an output of the secondary laser to its input. A photodiode may generate a photodiode signal based on the laser output. A digital-to-time converter (DTC) may generate a reference signal. The FLL path may coarsely tune the secondary laser based on the photodiode signal until the secondary laser is frequency locked. Then, the PLL path may finely tune the secondary laser based on the reference signal and the photodiode signal until the phase of the secondary laser is locked to the primary laser. The photodiode signal may be subsampled on the PLL path. This may allow the OPLL to generate optical local oscillator signals with minimal jitter and phase noise.
    Type: Grant
    Filed: June 1, 2022
    Date of Patent: April 9, 2024
    Assignee: Apple Inc.
    Inventors: Zdravko Boos, Alfredo Bismuto, Bertram R Gunzelmann
  • Publication number: 20240113508
    Abstract: A laser chip including a plurality of stripes is disclosed, where a laser stripe can be grown with an initial optical gain profile, and its optical gain profile can be shifted by using an intermixing process. In this manner, multiple laser stripes can be formed on the same laser chip from the same epitaxial wafer, where at least one laser stripe can have an optical gain profile shifted relative to another laser stripe. For example, each laser stripe can have a shifted optical gain profile relative to its neighboring laser stripe, thereby each laser stripe can emit light with a different range of wavelengths. The laser chip can emit light across a wide range of wavelengths. Examples of the disclosure further includes different regions of a given laser stripe having different intermixing amounts.
    Type: Application
    Filed: September 11, 2023
    Publication date: April 4, 2024
    Inventors: Alfredo Bismuto, Mark Alan Arbore, Ross M. Audet
  • Publication number: 20240094466
    Abstract: Configurations for an optical system used for guiding light and reducing back-reflection back in an output waveguide is disclosed. The optical system may include an output waveguide defined in a slab waveguide. The output waveguide may terminate before an output side of the slab waveguide, which may reduce the back-reflection of light from the output side back into the output waveguide. The output side may define an optical element that may steer the output light. The optical element may collimate the output light, cause the output light to converge, or cause the output light to diverge.
    Type: Application
    Filed: September 20, 2022
    Publication date: March 21, 2024
    Inventors: Mark A. Arbore, Mohsen Kamandar Dezfouli, Yongming Tu, Jeremy D. Witmer, Huiyang Deng, Alfredo Bismuto, Petr Markov
  • Publication number: 20240090102
    Abstract: Disclosed herein is an integrated photonics device including a frequency stabilization subsystem for monitoring and/or adjusting the wavelength of light emitted by one or more light sources. The device can include one or more selectors that can combine, select, and/or filter light along one or more light paths, which can include light emitted by a plurality of light sources. Example selectors may include, but are not limited to, an arrayed waveguide grating (AWG), a ring resonator, a plurality of distributed Bragg reflectors (DBRs), a plurality of filters, and the like. Output light paths from the selector(s) can be input into one or more detector(s). The detector(s) can receive the light along the light paths and can generate one or more signals as output signal(s) from the frequency stabilization subsystem.
    Type: Application
    Filed: November 26, 2023
    Publication date: March 14, 2024
    Inventors: Alfredo Bismuto, Yi-Juei Ryan Wu, Thomas Schrans, Andrea Trita, Aaron Zilkie
  • Publication number: 20240077679
    Abstract: Methods and systems concerning demultiplexing and multiplexing light in optical multiplexing systems are disclosed herein. An optical multiplexing system may include a number of light emitters and a number of associated waveguides. Light emitted from each of the number of light emitters may travel through the associated waveguide and may enter a multiplexer, where a multiplexing operation may occur. At least one of the number of light emitters may be configured to emit light with multiple wavelengths. Such a light emitter may further be associated with a demultiplexer to demultiplex the light with multiple wavelengths before the light reaches a multiplexer. After a demultiplexing operation, the demultiplexed light may be directed to multiple waveguides and the multiple waveguides may guide the demultiplexed light to a multiplexer.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 7, 2024
    Inventors: Mark Alan Arbore, Alfredo Bismuto
  • Patent number: 11914201
    Abstract: A multi-chip photonic assembly includes first and second photonic integrated circuits having first and second waveguides vertically stacked such that first vertical dimensions of the first and second waveguides occupy different horizontal planes in the stack. At least one of the first and second waveguides has a region that has a second vertical dimension that is larger than the first vertical dimension and either horizontally overlaps the other waveguide and/or vertically contacts the other waveguide. Light moving through one of the waveguides from the first vertical dimension to the other vertical dimension changes modes vertically so that the light moves from one waveguide to the other.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: February 27, 2024
    Assignee: Apple Inc.
    Inventors: Jeremy D. Witmer, Alfredo Bismuto
  • Patent number: 11886007
    Abstract: A waveguide structure and a method for splitting light is described. The method may include optically coupling a first waveguide and a second waveguide, where the optical coupling may be wavelength insensitive. The widths of the first and second waveguides may be non-adiabatically varying and the optical coupling may be asymmetric between the first and second waveguides. A gap between the first and second waveguides may also be varied non-adiabatically and the gap may depend on the widths of the first and second waveguides. The optical coupling between the first and second waveguides may also occur in the approximate wavelength range of 800 nanometers to 1700 nanometers.
    Type: Grant
    Filed: November 11, 2022
    Date of Patent: January 30, 2024
    Assignee: Apple Inc.
    Inventors: Yi-Kuei Wu, Yongming Tu, Alfredo Bismuto, Andrea Trita, Yangyang Liu
  • Patent number: 11881678
    Abstract: Configurations for a photonics assembly and the operation thereof are disclosed. The photonics assembly may include multiple photonics dies which may be arranged in an offset vertical stack. The photonics dies may emit light, and in some examples, an optical element may be a detector for monitoring properties such as the wavelength of the light. The photonics dies may be arranged in a stack as a package and the packages may be stacked or arranged side by side or both for space savings. The PIC may include combining and/or collimating optics to receive light from the photonics dies, a mirror to redirect the light, and an aperture structure. The aperture structure may include a region which is at least partially transparent such that light transmits through the transparent region of the aperture structure. The aperture structure may include an at least partially opaque region which may be used for directing and/or controlling the light launch position.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: January 23, 2024
    Assignee: Apple Inc.
    Inventors: Michael J. Bishop, Kwan-Yu Lai, Alex Goldis, Alfredo Bismuto, Jeffrey Thomas Hill
  • Publication number: 20240012246
    Abstract: Systems, methods, and devices for eye tracking are provided. A device may include at least one printed circuit board including a shape around a lens of the device. The device may also include a plurality of light emitting diodes arranged around the shape of the lens. The plurality of light emitting diodes may be configured to connect to the at least one printed circuit board. The plurality of light emitting diodes may also be configured to illuminate light directed to at least one eye of a user to cause at least one reflection of the at least one eye.
    Type: Application
    Filed: April 25, 2023
    Publication date: January 11, 2024
    Inventors: Wei Wu, Anthony Diego Draper, Daniel Turowski, Mehmet Mutlu, Alfredo Bismuto, Qi Zhang, Kuan Pei Yap
  • Publication number: 20240012473
    Abstract: Systems, methods, and devices for eye tracking are provided. A device may include a multi-functional optical module including a plurality of optical lens layers. The device may include a layer, among the plurality of optical lens layers, including a patterned substrate including a plurality of light emitting diodes in a field of view of the layer and a plurality of wires configured to connect to a printed circuit board assembly. The light emitting diodes in the field of view may be configured to illuminate light directed to at least one eye of a user to cause at least one reflection of the at least one eye.
    Type: Application
    Filed: April 25, 2023
    Publication date: January 11, 2024
    Inventors: Wei Wu, Mehmet Mutlu, Alfredo Bismuto, Qi Zhang, Kuan Pei Yap
  • Publication number: 20240012244
    Abstract: An eye-tracking system may include an optical assembly with integrated micro light emitting diodes. The optical assembly may include a substrate and a flexible printed circuit board assembly bonded to the substrate. Micro light emitting diodes may also be bonded to the substrate. A plurality of conductors may be laminated in the substrate. The conductors may electrically connect the micro light emitting diodes to the printed circuit board assembly. An optically clear adhesive layer may be adhered to the substrate. The optically clear adhesive layer may include an anti-reflective layer and an optical adhesive layer to arranged in a stacked configuration.
    Type: Application
    Filed: July 11, 2022
    Publication date: January 11, 2024
    Applicant: Meta Platforms Technologies, LLC
    Inventors: Mehmet MUTLU, Wei Wu, Alfredo Bismuto, Qi Zhang, Kuan Pei Yap
  • Patent number: 11852865
    Abstract: Configurations for an optical system with phase shifting elements are disclosed. The optical system may include a first waveguide that provides light to a second waveguide, which may be a slab waveguide. A phase shifting element may be disposed on the slab waveguide and may be heated to induce a temperature change in the slab waveguide. By increasing the temperature of the propagation region of the slab waveguide, the index of refraction of the propagation region of the slab waveguide may shift, thus causing the index of refraction of light propagating through the propagation region to shift, thus shifting the phase of the light. This may result in an optical component capable of phase shifting light for reducing coherent noise while being energy efficient and maintaining a small form factor.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: December 26, 2023
    Assignee: Apple Inc.
    Inventors: Yongming Tu, Alfredo Bismuto
  • Publication number: 20230411932
    Abstract: The disclosed tunable laser array may include multiple lasers including at least first and second lasers having center emission wavelengths that are separated by at least a specified minimum wavelength. The tunable laser array may also include at least one coupler/splitter. In the tunable laser array, emitted light from the first laser at a first wavelength and emitted light from the second laser at a second, different wavelength may be combined and then split at the coupler/splitter. Moreover, the lasers may have at least a minimum amount of thermal resistance. Various other systems, apparatuses, and methods of manufacturing are also disclosed.
    Type: Application
    Filed: June 16, 2022
    Publication date: December 21, 2023
    Inventors: Petr Markov, Alfredo Bismuto, David Miller, Guohua Wei
  • Patent number: 11832364
    Abstract: Disclosed herein is an integrated photonics device including a frequency stabilization subsystem for monitoring and/or adjusting the wavelength of light emitted by one or more light sources. The device can include one or more selectors that can combine, select, and/or filter light along one or more light paths, which can include light emitted by a plurality of light sources. Example selectors may include, but are not limited to, an arrayed waveguide grating (AWG), a ring resonator, a plurality of distributed Bragg reflectors (DBRs), a plurality of filters, and the like. Output light paths from the selector(s) can be input into one or more detector(s). The detector(s) can receive the light along the light paths and can generate one or more signals as output signal(s) from the frequency stabilization subsystem.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: November 28, 2023
    Inventors: Alfredo Bismuto, Yi-Kuei Ryan Wu, Thomas Schrans, Andrea Trita, Aaron Zilkie
  • Patent number: 11815719
    Abstract: Methods and systems concerning demultiplexing and multiplexing light in optical multiplexing systems are disclosed herein. An optical multiplexing system may include a number of light emitters and a number of associated waveguides. Light emitted from each of the number of light emitters may travel through the associated waveguide and may enter a multiplexer, where a multiplexing operation may occur. At least one of the number of light emitters may be configured to emit light with multiple wavelengths. Such a light emitter may further be associated with a demultiplexer to demultiplex the light with multiple wavelengths before the light reaches a multiplexer. After a demultiplexing operation, the demultiplexed light may be directed to multiple waveguides and the multiple waveguides may guide the demultiplexed light to a multiplexer.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: November 14, 2023
    Assignee: Apple Inc.
    Inventors: Mark Alan Arbore, Alfredo Bismuto
  • Publication number: 20230359030
    Abstract: A system for eye tracking is disclosed. The system may detect illumination including a first wavelength emitted from one or more illumination sources. The illumination may propagate along a waveguide(s) to a termination node(s) associated with the waveguide(s). The system may detect the illumination propagating a remote fluorophore located at the termination node(s). The system may determine that the remote fluorophore shifted the first wavelength to a second wavelength such that the illumination includes the second wavelength.
    Type: Application
    Filed: May 6, 2022
    Publication date: November 9, 2023
    Inventors: Francis Lawrence Leard, Alfredo Bismuto
  • Publication number: 20230359029
    Abstract: A tunable fluorescent quantum dot may be utilized for illumination of artificial reality displays or waveguides. The tunable quantum dot may include a core fluorescence quantum dot and multiple coatings that may activate based on different wavelengths of one or more activation energies.
    Type: Application
    Filed: May 6, 2022
    Publication date: November 9, 2023
    Inventors: Alfredo Bismuto, Francis Lawrence Leard, Sascha Hallstein
  • Publication number: 20230314210
    Abstract: A device including a plurality of epitaxial chips is disclosed. An epitaxial chip can have one or more of a light source and a detector, where the detector can be configured to measure the optical properties of the light emitted by a light source. In some examples, one or more epitaxial chips can have one or more optical properties that differ from other epitaxial chips. The epitaxial chips can be dependently operable. For example, the detector located on one epitaxial chip can be configured for measuring the optical properties of light emitted by a light source located on another epitaxial chip by way of one or more optical signals. The collection of epitaxial chips can also allow detection of a plurality of laser outputs, where two or more epitaxial chips can have different material and/or optical properties.
    Type: Application
    Filed: June 2, 2023
    Publication date: October 5, 2023
    Inventors: Alfredo Bismuto, David I. Simon, Jason Pelc
  • Patent number: 11777279
    Abstract: A laser chip including a plurality of stripes is disclosed, where a laser stripe can be grown with an initial optical gain profile, and its optical gain profile can be shifted by using an intermixing process. In this manner, multiple laser stripes can be formed on the same laser chip from the same epitaxial wafer, where at least one laser stripe can have an optical gain profile shifted relative to another laser stripe. For example, each laser stripe can have a shifted optical gain profile relative to its neighboring laser stripe, thereby each laser stripe can emit light with a different range of wavelengths. The laser chip can emit light across a wide range of wavelengths. Examples of the disclosure further includes different regions of a given laser stripe having different intermixing amounts.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: October 3, 2023
    Assignee: Apple Inc.
    Inventors: Alfredo Bismuto, Mark Alan Arbore, Ross M. Audet
  • Patent number: 11713999
    Abstract: A device including a plurality of epitaxial chips is disclosed. An epitaxial chip can have one or more of a light source and a detector, where the detector can be configured to measure the optical properties of the light emitted by a light source. In some examples, one or more epitaxial chips can have one or more optical properties that differ from other epitaxial chips. The epitaxial chips can be dependently operable. For example, the detector located on one epitaxial chip can be configured for measuring the optical properties of light emitted by a light source located on another epitaxial chip by way of one or more optical signals. The collection of epitaxial chips can also allow detection of a plurality of laser outputs, where two or more epitaxial chips can have different material and/or optical properties.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: August 1, 2023
    Assignee: Apple Inc.
    Inventors: Alfredo Bismuto, David I. Simon, Jason Pelc