Patents by Inventor Ali Dianaty

Ali Dianaty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11904139
    Abstract: A processor-implemented method for closed-loop control in steady-state conditions includes determining, based on data including historical bolus information but excluding historical basal information, an amount of unmetabolized therapeutic substance in a patient; determining, based on a difference between a most recent measurement of a physiological condition of the patient and a target value for the physiological condition, a first amount or rate of a basal dosage for delivery to the patient; adjusting, based on the amount of unmetabolized therapeutic substance, the first amount or rate of the basal dosage to determine a second amount or rate of the basal dosage; and causing delivery of the second amount or rate of the basal dosage based on communicating the second amount or rate in a delivery command.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: February 20, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Benyamin Grosman, Louis J. Lintereur, Anirban Roy, Neha J. Parikh, Di Wu, Patrick E. Weydt, David Dunleavy, Ali Dianaty
  • Patent number: 11904138
    Abstract: Disclosed herein are techniques related to glucose level management without carbohydrate counting. The techniques may involve obtaining contextual information for a meal, predicting amounts of glucose to be absorbed into a bloodstream of the patient over a duration of time due to consumption of the meal based on the contextual information for the meal, determining one or more amounts of insulin to counteract effects of the predicted amounts of glucose, and affecting insulin therapy based on outputting information indicative of the determined one or more amounts of insulin.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: February 20, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Boyi Jiang, Yuxiang Zhong, Pratik J. Agrawal, Ali Dianaty
  • Patent number: 11839744
    Abstract: Techniques related to automatically generating a super bolus may include determining an amount of an augmented meal bolus to be delivered to a patient for regulating the patient's glycemic response to a meal. The amount of the augmented meal bolus may exceed a sufficient amount for counteracting a glucose level increase caused by the meal. In some embodiments, the techniques may further include determining a duration of a postprandial reduction period during which basal dosage deliveries to the patient are to be reduced. In some other embodiments, the techniques may further include delivering the augmented meal bolus to the patient prior to determining whether or not to cause reduction of basal dosage deliveries. More specifically, a glucose level of the patient may be obtained after delivery of the augmented meal bolus, and the obtained glucose level may be used to determine whether to reduce basal dosage deliveries.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: December 12, 2023
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Benyamin Grosman, Louis J. Lintereur, Anirban Roy, Neha J. Parikh, Di Wu, Patrick E. Weydt, David Dunleavy, Ali Dianaty
  • Patent number: 11833327
    Abstract: A method of automatically initializing an analyte sensor for a user is disclosed here. A first analyte sensor is operated in a first measurement mode to generate first sensor signals indicative of an analyte level of the user. A second analyte sensor is deployed to measure the analyte level of the user, and is operated in an initialization mode, concurrently with operation of the first analyte sensor in the first measurement mode, to receive sensor configuration data generated by the first analyte sensor. During operation of the second analyte sensor in the initialization mode, the second analyte sensor is calibrated with at least some of the received sensor configuration data. After the calibrating, operation of the second analyte sensor is transitioned from the initialization mode to a second measurement mode during which the second analyte sensor generates second sensor signals indicative of the analyte level of the user.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: December 5, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Erik Montero, David C. Antonio, Eric Allan Larson, Meng Dai Yu, Samuel Finney, Hans K. Wenstad, David M. Aguirre, Andrew P. Lynch, Andrea Varsavsky, Ali Dianaty
  • Publication number: 20230302221
    Abstract: Techniques disclosed herein relate to infusion devices and related meal bolus adjustment methods. In some embodiments, the techniques may involve determining an initial bolus amount. The techniques may further involve predicting a value for a first physiological condition based at least in part on the initial bolus amount. The techniques may further involve when the predicted value for the first physiological condition violates a threshold: identifying an adjusted bolus amount that results in the predicted value for the first physiological condition satisfying the threshold, and causing delivery of the adjusted bolus amount.
    Type: Application
    Filed: June 1, 2023
    Publication date: September 28, 2023
    Inventors: Louis J. Lintereur, Anirban Roy, Benyamin Grosman, Patrick E. Weydt, Neha J. Parikh, Di Wu, Ali Dianaty
  • Patent number: 11744946
    Abstract: Techniques related to automatically generating a super bolus may include determining an amount of an augmented meal bolus to be delivered to a patient for regulating the patient's glycemic response to a meal. The amount of the augmented meal bolus may exceed a sufficient amount for counteracting a glucose level increase caused by the meal. In some embodiments, the techniques may further include determining a duration of a postprandial reduction period during which basal dosage deliveries to the patient are to be reduced. In some other embodiments, the techniques may further include delivering the augmented meal bolus to the patient prior to determining whether or not to cause reduction of basal dosage deliveries. More specifically, a glucose level of the patient may be obtained after delivery of the augmented meal bolus, and the obtained glucose level may be used to determine whether to reduce basal dosage deliveries.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: September 5, 2023
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Benyamin Grosman, Louis J. Lintereur, Anirban Roy, Neha J. Parikh, Di Wu, Patrick E. Weydt, David Dunleavy, Ali Dianaty
  • Publication number: 20230248910
    Abstract: Techniques disclosed herein relate to safe correction boluses. In some embodiments, the techniques involve predicting a future glucose level that would result from delivery of a correction bolus. The techniques may also involve comparing the future glucose level to a threshold level for hypoglycemia. The techniques may further involve causing delivery of the correction bolus when the future glucose level is above the threshold level for hypoglycemia.
    Type: Application
    Filed: April 20, 2023
    Publication date: August 10, 2023
    Inventors: Louis J. Lintereur, Anirban Roy, Benyamin Grosman, Patrick E. Weydt, Neha J. Parikh, Di Wu, Ali Dianaty
  • Patent number: 11712520
    Abstract: Medical devices and related systems and operating methods are provided. A method of operating an infusion device capable of delivering fluid influencing a physiological condition to a patient involves obtaining an event indication, such as a meal indication, determining an initial bolus amount based on the event indication, and determining predicted values for the physiological condition of the patient during a time window into the future based at least in part on the initial bolus amount. When the predicted values violate a threshold during the time window, the control system identifies an adjusted bolus amount that results in the predicted values for the physiological condition satisfying the threshold during the time window from within a search space defined by the initial bolus amount and operates an actuation arrangement of the infusion device to deliver the adjusted bolus amount of the fluid to the patient.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: August 1, 2023
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Louis J. Lintereur, Anirban Roy, Benyamin Grosman, Patrick E. Weydt, Neha J. Parikh, Di Wu, Ali Dianaty
  • Publication number: 20230218909
    Abstract: A method is provided for establishing a communication session with an implantable medical device (“IMD”). The method includes configuring an IMD and an external device to communicate with one another through a protocol that utilizes a dedicated advertisement channel. The advertisement period and the scan period of the protocol are independent of one another such that the advertisement and scan periods at least partially overlap intermittently after a number of cycles. When the external device detects one of the advertisement notices, the method includes establishing a communications link between the external device and the IMD.
    Type: Application
    Filed: March 9, 2023
    Publication date: July 13, 2023
    Inventors: Reza Shahandeh, Richard Williamson, Gabriel Mouchawar, Brent Croft, William Winstrom, Robert McCormick, Jorge N. Amely-Velez, Thanh Tieu, Ali Dianaty, Samir Shah, Yongjian Wu
  • Patent number: 11660394
    Abstract: A method of controlling an insulin infusion device involves controlling the device to operate in an automatic basal insulin delivery mode, obtaining a blood glucose measurement for the user, and initiating a correction bolus procedure when: the measurement exceeds a correction bolus threshold value; and a maximum basal insulin infusion rate is reached during the automatic basal insulin delivery mode. The correction bolus procedure calculates an initial correction bolus amount, and scales the initial amount to obtain a final correction bolus amount, such that a predicted future blood glucose level resulting from simulated delivery of the final correction bolus amount exceeds a low blood glucose threshold level. The final amount is delivered to the user during operation in the automatic basal insulin delivery mode.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: May 30, 2023
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Louis J. Lintereur, Anirban Roy, Benyamin Grosman, Patrick E. Weydt, Neha J. Parikh, Di Wu, Ali Dianaty
  • Patent number: 11633609
    Abstract: A method is provided for establishing a communication session with an implantable medical device (“IMD”). The method includes configuring an IMD and an external device to communicate with one another through a protocol that utilizes a dedicated advertisement channel. The advertisement period and the scan period of the protocol are independent of one another such that the advertisement and scan periods at least partially overlap intermittently after a number of cycles. When the external device detects one of the advertisement notices, the method includes establishing a communications link between the external device and the IMD.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: April 25, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Reza Shahandeh, Richard Williamson, Gabriel Mouchawar, Brent Croft, William Winstrom, Robert McCormick, Jorge N. Amely-Velez, Thanh Tieu, Ali Dianaty, Samir Shah, Yongjian Wu
  • Publication number: 20230068793
    Abstract: Techniques disclosed herein relate generally to notification generation in a medical device system. In some embodiments, the techniques involve generating a first notification via a medical application executing on a first device, determining that the first notification was not acknowledged within a predetermined time frame, and causing generation of a second notification at a medical device carried by a user to notify the user that the first notification has not been acknowledged.
    Type: Application
    Filed: November 8, 2022
    Publication date: March 2, 2023
    Inventors: Afshin Bazargan, Michael Ivey, Virgilio Macion, Ali Dianaty
  • Publication number: 20230044319
    Abstract: Infusion devices and related medical devices, patient data management systems, and methods are provided for monitoring a physiological condition of a patient. An exemplary infusion device includes an actuation arrangement operable to deliver fluid to a user, a communications interface to receive measurement data indicative of a physiological condition of the user, a sensing arrangement to obtain contextual measurement data, and a control system coupled to the actuation arrangement, the communications interface and the sensing arrangement to determine a command for autonomously operating the actuation arrangement in a manner that is influenced by the measurement data and the contextual measurement data and autonomously operate the actuation arrangement in accordance with the command to deliver the fluid to the user.
    Type: Application
    Filed: May 13, 2022
    Publication date: February 9, 2023
    Inventors: Huzefa F. Neemuchwala, Pratik Agrawal, Benyamin Grosman, Anirban Roy, Patrick E. Weydt, Louis J. Lintereur, Ali Dianaty, Yuxiang Zhong, Chantal M. McMahon
  • Publication number: 20220313908
    Abstract: A processor-implemented method for closed-loop control in steady-state conditions includes determining, based on data including historical bolus information but excluding historical basal information, an amount of unmetabolized therapeutic substance in a patient; determining, based on a difference between a most recent measurement of a physiological condition of the patient and a target value for the physiological condition, a first amount or rate of a basal dosage for delivery to the patient; adjusting, based on the amount of unmetabolized therapeutic substance, the first amount or rate of the basal dosage to determine a second amount or rate of the basal dosage; and causing delivery of the second amount or rate of the basal dosage based on communicating the second amount or rate in a delivery command.
    Type: Application
    Filed: April 5, 2021
    Publication date: October 6, 2022
    Inventors: Benyamin Grosman, Louis J. Lintereur, Anirban Roy, Neha J. Parikh, Di Wu, Patrick E. Weydt, David Dunleavy, Ali Dianaty
  • Publication number: 20220257858
    Abstract: Techniques related to automatically generating a super bolus may include determining an amount of an augmented meal bolus to be delivered to a patient for regulating the patient's glycemic response to a meal. The amount of the augmented meal bolus may exceed a sufficient amount for counteracting a glucose level increase caused by the meal. In some embodiments, the techniques may further include determining a duration of a postprandial reduction period during which basal dosage deliveries to the patient are to be reduced. In some other embodiments, the techniques may further include delivering the augmented meal bolus to the patient prior to determining whether or not to cause reduction of basal dosage deliveries. More specifically, a glucose level of the patient may be obtained after delivery of the augmented meal bolus, and the obtained glucose level may be used to determine whether to reduce basal dosage deliveries.
    Type: Application
    Filed: February 18, 2021
    Publication date: August 18, 2022
    Inventors: Benyamin Grosman, Louis J. Lintereur, Anirban Roy, Neha J. Parikh, Di Wu, Patrick E. Weydt, David Dunleavy, Ali Dianaty
  • Publication number: 20220257859
    Abstract: Techniques related to automatically generating a super bolus may include determining an amount of an augmented meal bolus to be delivered to a patient for regulating the patient's glycemic response to a meal. The amount of the augmented meal bolus may exceed a sufficient amount for counteracting a glucose level increase caused by the meal. In some embodiments, the techniques may further include determining a duration of a postprandial reduction period during which basal dosage deliveries to the patient are to be reduced. In some other embodiments, the techniques may further include delivering the augmented meal bolus to the patient prior to determining whether or not to cause reduction of basal dosage deliveries. More specifically, a glucose level of the patient may be obtained after delivery of the augmented meal bolus, and the obtained glucose level may be used to determine whether to reduce basal dosage deliveries.
    Type: Application
    Filed: February 18, 2021
    Publication date: August 18, 2022
    Inventors: Benyamin Grosman, Louis J. Lintereur, Anirban Roy, Neha J. Parikh, Di Wu, Patrick E. Weydt, David Dunleavy, Ali Dianaty
  • Publication number: 20220245504
    Abstract: Techniques for determining insulin therapy are described. The techniques include obtaining patient characteristic information for a current patient; determining, with a machine-learning model, an insulin delivery therapy from a plurality of insulin delivery therapies for the current patient based on the patient characteristic information, wherein the machine-learning model is generated based on digital representations of a plurality of patients; and outputting information indicative of the determined insulin delivery therapy.
    Type: Application
    Filed: January 29, 2021
    Publication date: August 4, 2022
    Inventors: Boyi Jiang, Yuxiang Zhong, Pratik J. Agrawal, Ali Dianaty
  • Publication number: 20220241500
    Abstract: Disclosed herein are techniques related to glucose level management without carbohydrate counting. The techniques may involve obtaining contextual information for a meal, predicting amounts of glucose to be absorbed into a bloodstream of the patient over a duration of time due to consumption of the meal based on the contextual information for the meal, determining one or more amounts of insulin to counteract effects of the predicted amounts of glucose, and affecting insulin therapy based on outputting information indicative of the determined one or more amounts of insulin.
    Type: Application
    Filed: January 29, 2021
    Publication date: August 4, 2022
    Inventors: Boyi Jiang, Yuxiang Zhong, Pratik J. Agrawal, Ali Dianaty
  • Publication number: 20220241501
    Abstract: Disclosed herein are techniques related to glucose level management without carbohydrate counting. The techniques may involve obtaining contextual information for a meal, predicting amounts of glucose to be absorbed into a bloodstream of the patient over a duration of time due to consumption of the meal based on the contextual information for the meal, determining one or more amounts of insulin to counteract effects of the predicted amounts of glucose, and affecting insulin therapy based on outputting information indicative of the determined one or more amounts of insulin.
    Type: Application
    Filed: January 29, 2021
    Publication date: August 4, 2022
    Inventors: Boyi Jiang, Yuxiang Zhong, Pratik J. Agrawal, Ali Dianaty
  • Patent number: 11350886
    Abstract: Infusion devices and related medical devices, patient data management systems, and methods are provided for monitoring a physiological condition of a patient. An exemplary infusion device includes an actuation arrangement operable to deliver fluid to a user, a communications interface to receive measurement data indicative of a physiological condition of the user, a sensing arrangement to obtain contextual measurement data, and a control system coupled to the actuation arrangement, the communications interface and the sensing arrangement to determine a command for autonomously operating the actuation arrangement in a manner that is influenced by the measurement data and the contextual measurement data and autonomously operate the actuation arrangement in accordance with the command to deliver the fluid to the user.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: June 7, 2022
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Huzefa F. Neemuchwala, Pratik Agrawal, Benyamin Grosman, Anirban Roy, Patrick E. Weydt, Louis J. Lintereur, Ali Dianaty, Yuxiang Zhong, Chantal M. McMahon