Patents by Inventor Allan C. Shuros

Allan C. Shuros has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11666753
    Abstract: A device for the active fixation of an implantable medical lead includes a housing, a tine assembly, an electrode, and a rotatable shaft. The housing includes a proximal end for connecting to the lead and a distal end opposite the proximal end. The housing defines a housing lumen extending between the proximal end and a recess adjacent to the distal end. The tine assembly is disposed within the housing lumen and includes at least one tine configured to self-bias from a linear configuration within the housing to a curved configuration outside of the housing. The electrode assembly is disposed at the distal end of the housing and includes a plurality of electrodes. The rotatable shaft extends through the housing lumen and is configured to engage the tine assembly such that rotation of the shaft transitions the at least one tine between the linear configuration and the curved configuration.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: June 6, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Arthur J. Foster, Keith L. Herrmann, Deepa Mahajan, Stephen J. Hahn
  • Publication number: 20230026265
    Abstract: At least some embodiments of the present disclosures are directed to a hybrid electroporation ablation catheter. In some embodiments, the hybrid electroporation ablation catheter comprises a catheter shaft having a proximal end and an opposite distal end and an electrode assembly extending from the distal end of the catheter shaft and the electrode assembly comprising a plurality of energy-delivering electrodes. The electrode assembly is configured to be selectively operable in a plurality of different operation modes.
    Type: Application
    Filed: July 22, 2021
    Publication date: January 26, 2023
    Inventors: Allan C. Shuros, Brendan E. Koop, Michael S. Coe
  • Publication number: 20220257297
    Abstract: An electroporation ablation system for treating targeted tissue in a patient. The electroporation ablation system including an ablation catheter and an electroporation generator. The ablation catheter including a handle, a shaft having a distal end, and catheter electrodes situated at the distal end of the shaft and spatially arranged to generate electric fields in the targeted tissue in response to electrical pulses. The electroporation generator operatively coupled to the catheter electrodes and configured to deliver the electrical pulses in an electroporation pulse sequence to one or more catheter electrodes. Wherein, the electroporation pulse sequence includes multiple pulse bursts, and each of the multiple pulse bursts includes pulses separated by an inter-pulse length of between 200 and 350 microseconds to reduce muscle stimulation while creating electroporation lesions.
    Type: Application
    Filed: February 10, 2022
    Publication date: August 18, 2022
    Inventors: Brendan E. Koop, Allan C. Shuros, Jonathan T. Gorzycki
  • Publication number: 20220257948
    Abstract: Various aspects of the present disclosure are directed toward apparatuses, systems, and methods for pacing a HIS bundle of a patient. The apparatuses, systems, and methods may include applying stimulation energy through one or more of a plurality of electrodes to direct a stimulation locus and pace a HIS bundle of a patient.
    Type: Application
    Filed: May 5, 2022
    Publication date: August 18, 2022
    Inventors: Pramodsingh H. Thakur, Allan C. Shuros, Brian Soltis, Juan G. Hincapie, Qi An, Yinghong Yu, Keith R. Maile
  • Patent number: 11389649
    Abstract: Delivery devices, systems, and methods for delivering implantable leadless pacing devices are disclosed. An example delivery device may include an intermediate tubular member and an inner tubular member slidably disposed within a lumen of the intermediate tubular member. A distal holding section may extend distally of a distal end of the intermediate tubular member and define a cavity therein for receiving an implantable leadless pacing device. The device may further include a handle assembly including at least an intermediate hub portion affixed adjacent to the proximal end of the intermediate tubular member and a proximal hub portion affixed adjacent to the proximal end of the inner tubular member. A longitudinally extending groove having a proximal end and a distal end may be disposed in the intermediate hub portion. A first locking mechanism may be configured to releasably couple the intermediate hub portion and the proximal hub portion.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: July 19, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brian Soltis, Benjamin J. Haasl, Allan C. Shuros, Brian L. Schmidt, James P. Goodman
  • Publication number: 20220211998
    Abstract: A device for the active fixation of an implantable medical lead includes a housing, a tine assembly, an electrode, and a rotatable shaft. The housing includes a proximal end for connecting to the lead and a distal end opposite the proximal end. The housing defines a housing lumen extending between the proximal end and a recess adjacent to the distal end. The tine assembly is disposed within the housing lumen and includes at least one tine configured to self-bias from a linear configuration within the housing to a curved configuration outside of the housing. The electrode assembly is disposed at the distal end of the housing and includes a plurality of electrodes. The rotatable shaft extends through the housing lumen and is configured to engage the tine assembly such that rotation of the shaft transitions the at least one tine between the linear configuration and the curved configuration.
    Type: Application
    Filed: February 4, 2022
    Publication date: July 7, 2022
    Inventors: Allan C. Shuros, Arthur J. Foster, Keith L. Herrmann, Deepa Mahajan, Stephen J. Hahn
  • Patent number: 11338145
    Abstract: Various aspects of the present disclosure are directed toward apparatuses, systems, and methods for pacing a HIS bundle of a patient. The apparatuses, systems, and methods may include applying stimulation energy through one or more of a plurality of electrodes to direct a stimulation locus and pace a HIS bundle of a patient.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: May 24, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh H. Thakur, Allan C. Shuros, Brian Soltis, Juan G. Hincapie, Qi An, Yinghong Yu, Keith R. Maile
  • Patent number: 11318303
    Abstract: A device for the active fixation of an implantable medical lead includes a housing, a tine assembly, an electrode, and a rotatable shaft. The housing includes a proximal end for connecting to the lead and a distal end opposite the proximal end. The housing defines a housing lumen extending between the proximal end and a recess adjacent to the distal end. The tine assembly is disposed within the housing lumen and includes at least one tine configured to self-bias from a linear configuration within the housing to a curved configuration outside of the housing. The electrode assembly is disposed at the distal end of the housing and includes a plurality of electrodes. The rotatable shaft extends through the housing lumen and is configured to engage the tine assembly such that rotation of the shaft transitions the at least one tine between the linear configuration and the curved configuration.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: May 3, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Arthur J. Foster, Keith L. Herrmann, Deepa Mahajan, Stephen J. Hahn
  • Patent number: 11285326
    Abstract: Systems and methods for rate-adaptive pacing are disclosed. In one illustrative embodiment, a medical device for delivering electrical stimulation to a heart may include a housing configured to be implanted on the heart or within a chamber of the heart, one or more electrodes connected to the housing, and a controller disposed within the housing. The controller may be configured to sense a first signal and determine a respiration rate based at least in part on the sensed first signal. In at least some embodiments, the controller may be further configured to adjust a rate of delivery of electrical stimulation by the medical device based at least in part on the determined respiration rate.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: March 29, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Allan C. Shuros, Rodney W. Salo, Michael J. Kane, Donald L. Hopper
  • Publication number: 20220022953
    Abstract: At least some embodiments of the present disclosure are directed to an electroporation ablation device having a first catheter and a second catheter. The first catheter comprises one or more first electrodes and has a first surface area. The second catheter comprises one or more second electrodes and has a second surface area. When the electroporation ablation device is in operation for ablating a target tissue, the first catheter is configured to be disposed in an extracardiac location and anatomically proximate to the target tissue, the second catheter is configured to be disposed at an intracardiac location proximate to the target tissue, and the electroporation ablation device is configured to generate an electric field between the one or more first electrodes and the one or more second electrodes with electric field strength sufficient to ablate the target tissue via irreversible electroporation.
    Type: Application
    Filed: July 22, 2021
    Publication date: January 27, 2022
    Inventors: Allan C. Shuros, Brendan E. Koop
  • Publication number: 20220022954
    Abstract: At least some embodiments of the present disclosure are directed to an electroporation ablation catheter having tissue-contactless electrodes. In some embodiments, the electroporation ablation catheter comprises a catheter shaft defining a longitudinal axis and having a proximal end and a distal end; and an electrode assembly extending from the distal end of the catheter shaft, the electrode assembly configured to assume a first collapsed state and a second expanded state. In some cases, the electrode assembly includes an expandable component, and a plurality of electrodes disposed on the expandable component, where in the second state the expandable component have portions configured to protrude from adjacent electrodes.
    Type: Application
    Filed: July 22, 2021
    Publication date: January 27, 2022
    Inventors: Allan C. Shuros, Brendan E. Koop
  • Publication number: 20220022952
    Abstract: Disclosed herein are apparatus, systems, and methods for ablating tissue in a patient by electroporation. Embodiments generally include an ablation catheter having a hand, a shaft, and an electroporation electrode arrangement. The shaft has a distal end and defines a longitudinal axis of the ablation catheter. The electroporation electrode arrangement is at the distal end of the shaft and is configured to generate a multidirectional electric field when at least one pulse sequence is delivered thereto. The multidirectional electric field includes at least two of the following directions relative to the longitudinal axis: generally axial, circumferential, and transverse. The electroporation electrode arrangement is configured to operatively couple to an electroporation generator that is configured to generate the at least one pulse sequence and is configured to receive the at least one pulse sequence from the electroporation generator.
    Type: Application
    Filed: July 21, 2021
    Publication date: January 27, 2022
    Inventors: Brendan E. Koop, Andrew L. De Kock, Allan C. Shuros
  • Publication number: 20220015826
    Abstract: A catheter for focal cardiac ablation by irreversible electroporation includes a flexible catheter body, a plurality of tines disposed at a distal end of the catheter body, a flexible shaft, a return electrode, and an electrical conductor. The plurality of tines are formed of an electrically conductive material and configured to deploy from a lumen at the distal end of the catheter body. Each tine of the plurality of tines is configured to self-bias from a linear configuration within the lumen to a curved configuration when deployed from the lumen. The shaft is mechanically and electrically coupled to the plurality of tines. The shaft is configured to deploy the tines from the lumen when the shaft is moved toward the distal end of the catheter body. The return electrode is disposed on an outer surface of the catheter body. The electrical conductor is electrically coupled to the return electrode.
    Type: Application
    Filed: July 16, 2021
    Publication date: January 20, 2022
    Inventors: Brendan E. Koop, Andrew L. De Kock, Allan C. Shuros, Edward J. Maierhofer
  • Patent number: 11147976
    Abstract: Various aspects of the present disclosure are directed toward apparatuses, methods and systems that include implantable lead. The implantable lead may include an electrode arranged and a fixation element arranged about the lead body. The fixation element may extend circumferentially about the lead body.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: October 19, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Arthur J. Foster
  • Patent number: 10918299
    Abstract: Methods and systems for cardiac mapping are disclosed. An example system includes a catheter shaft with one or more electrodes coupled to a distal end of the catheter shaft. Electrodes sense electrical signals at anatomical locations within a heart. A processor coupled to the catheter shaft acquires electrogram signals of the heart using the electrodes. Each electrogram signal relates to three-dimensional positional data corresponding to the anatomical locations. The processor also store the electrogram signals of the heart corresponding to electrical activities sensed at corresponding anatomical locations, calculate an activation recovery interval associated with each of the corresponding anatomical locations, determine spatial gradient data of the activation recovery interval based on a distance between at least two neighboring anatomical locations.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: February 16, 2021
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Sarah R. Gutbrod, Jacob I. Laughner, Allan C. Shuros, Matthew S. Sulkin
  • Patent number: 10863916
    Abstract: Methods and systems for cardiac mapping are disclosed. An example system includes a catheter shaft with one or more electrodes coupled to a distal end of the catheter shaft. Electrodes sense electrical signals at anatomical locations within a heart. A processor coupled to the catheter shaft acquires electrogram signals of the heart using the electrodes. Each electrogram signal relates to three-dimensional positional data corresponding to the anatomical locations. The processor also store the electrogram signals of the heart corresponding to electrical activities sensed at corresponding anatomical locations, calculate an activation recovery interval associated with each of the corresponding anatomical locations, determine spatial gradient data of the activation recovery interval based on a distance between at least two neighboring anatomical locations.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: December 15, 2020
    Assignee: Boston Scientific Scimed Inc
    Inventors: Sarah R. Gutbrod, Jacob I. Laughner, Allan C. Shuros, Matthew S. Sulkin
  • Patent number: 10827978
    Abstract: A medical system for removing far-field signals from a unipolar electrical signal is disclosed. In embodiments, the medical system comprises a catheter and a processing device communicatively coupled to the catheter. The catheter comprises a plurality of electrodes configured to sense a plurality of unipolar signals transmitted through tissue. The processing device is configured to: receive the sensed unipolar electrical signals, determine an electrode having a high level of contact with the tissue, and determine an electrode having a lower level of contact with the tissue than the electrode having the high level of contact with the tissue. Further, the processing device is configured to determine a sensed near-field electrical signal based on the unipolar electrical signal received from the electrode having the high level of contact and the unipolar electrical signal received from the electrode having the lower level of contact.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: November 10, 2020
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Allan C. Shuros, Matthew S. Sulkin, Jacob I. Laughner, Vasiliy E. Buharin
  • Patent number: 10806931
    Abstract: Delivery devices, systems, and methods for delivering implantable leadless pacing devices are disclosed. An example delivery device may include a tubular member and a distal holding section extending distally of a distal end of the tubular member and defining a cavity therein for receiving an implantable leadless pacing device. The delivery device may facilitate vascular delivery of the pacing device to a left side of a patient's heart. In one example, a distal tip portion may extend distal of the distal holding section and may be actuated between a closed and an opened position. When in the closed position, the distal tip portion may have a tip that can puncture or engage an opening in a septum between a left atrium and a right atrium of a patient's heart. Actuating the distal tip portion to an opened position may be utilized to dilate the puncture or opening in the septum.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: October 20, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Allan C. Shuros, Arjun D. Sharma, James V. Kauphusman, Brendan E. Koop, Brian Soltis
  • Patent number: 10595739
    Abstract: An anatomical mapping system including a plurality of mapping electrodes disposed in or near an anatomical structure and configured to detect activation signals of physiological activity, each of the plurality of mapping electrodes having an electrode location, and a processing system associated with the plurality of mapping electrodes, and configured to record the detected activation signals and associate one of the plurality of mapping electrodes with each recorded activation signal. The processing system further configured to determine a dominant frequency at each electrode location, and determine a wavefront vector at each electrode location based on a difference between the dominant frequency at a first electrode location and the dominant frequency at neighboring electrode locations.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: March 24, 2020
    Assignee: Boston Scientific Scimed Inc
    Inventors: Pramodsingh Hirasingh Thakur, Shibaji Shome, Allan C. Shuros, Shantha Arcot-Krishnamurthy, Barun Maskara, Sunipa Saha
  • Patent number: 10575900
    Abstract: A catheter system includes a catheter comprising a tip assembly, the tip assembly having a plurality of electrodes and the plurality of electrodes are configured to measure electrical signals. The system also includes a processing unit configured to: receive a first electrical signal sensed by a first electrode of the plurality of electrodes and a second electrical signal sensed by a second electrode of the plurality of electrodes. A first vector is determined based on the first electrical signal that corresponds to the first electrode. A second vector is determined based on the second electrical signal that corresponds to the second electrode. A resultant vector is determined by summing at least the first vector and the second vector, wherein the resultant vector is indicative of the orientation of the tip assembly.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: March 3, 2020
    Assignee: Boston Scientific Scimed Inc
    Inventors: Jacob I. Laughner, Jason J. Hamann, Shibaji Shome, Allan C. Shuros, Mary M. Byron, Paul Hultz, Pramodsingh H. Thakur