Patents by Inventor Allan Charles Shuros

Allan Charles Shuros has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9649495
    Abstract: A system for use during revascularization includes a catheter having an adjustable balloon for delivery a stent, one or more pacing electrodes for delivering one or more pacing pulses to a patient's heart, and a pacemaker configured to generate the one or more pacing pulses to be delivered to the heart via the one or more pacing electrodes. The one or more pacing pulses are delivered at a rate substantially higher than the patient's intrinsic heart rate without being synchronized to the patient's intrinsic cardiac contractions, and are delivered before, during, or after an ischemic event to prevent or reduce cardiac injury.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: May 16, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan Charles Shuros, Tamara Colette Baynham, Jihong Qu, Joseph M. Pastore, Andrew P. Kramer, Frits W. Prinzen, Ward Y. R. Vanagt, Richard N. Cornelussen
  • Publication number: 20170120048
    Abstract: In one aspect, the present disclosure is directed to a method for identifying a site with a patient for treatment. The method may include engaging a plurality electrodes with an interior wall of the patient at a plurality of locations. The method may also generating a virtual map of a plurality of electrodes, wherein each of the plurality of electrodes is displayed with a first indicia. The method may also include displaying each of the plurality of electrodes engaged with the interior wall with a second indicia, measuring electrical activity, identifying at least one site for treatment based on the measured resulting electrical activity, and displaying each of the plurality of electrodes identified for treatment with a third indicia.
    Type: Application
    Filed: November 3, 2016
    Publication date: May 4, 2017
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Ding Sheng He, Sandra NAGALE, Allan Charles SHUROS, Charles GIBSON, Lynne SWANSON, Dennis WERNER, Timothy Paul HARRAH, Mark BODEN, Michael Charles PETERSON, Steven DIAMOND, Amedeo CHIAVETTA
  • Publication number: 20170072202
    Abstract: Systems, methods, and devices for detecting or confirming fibrillation are discussed. In one example, a method for detecting a cardiac arrhythmia of a patients' heart comprises receiving, by a leadless cardiac pacemaker fixed in the patients' heart, an indication from a remote device that a cardiac arrhythmia is detected, monitoring by the leadless cardiac pacemaker a signal generated by a sensor that is located within the patients' heart, and based at least in part on the monitored signal, confirming whether a cardiac arrhythmia is occurring or not. In some embodiments, the method may further comprise, if a cardiac arrhythmia is confirmed, delivering a therapy to treat the cardiac arrhythmia.
    Type: Application
    Filed: September 2, 2016
    Publication date: March 16, 2017
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Kane, Allan Charles Shuros, Brian L. Schmidt, Paul Huelskamp, Benjamin J. Haasl
  • Publication number: 20170056649
    Abstract: Systems, methods, and devices for detecting dislodgment of an implantable device are disclosed. In one example, a method for determining a dislodgement status may comprise collecting, by the implantable device operating in a first operating mode, a first number of accelerometer signal samples during a cardiac cycle of the heart and using the first number of accelerometer signal samples to determine a first patient parameter and collecting, by the implantable device operating in a second operating mode, a second number of accelerometer signal samples during a cardiac cycle of the heart and using the second number of accelerometer signal samples to determine a dislodgment status of the implantable device, wherein the first number is smaller than the second number. In some further embodiments, the method may further include providing a notification of the dislodgment status to a remote device that is remote from the implantable medical device.
    Type: Application
    Filed: August 26, 2016
    Publication date: March 2, 2017
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Kane, Allan Charles Shuros, Brian L. Schmidt, Keith R. Maile, Benjamin J. Haasl
  • Publication number: 20170056669
    Abstract: Systems, devices, and methods for pacing a heart of a patient are disclosed. In some embodiments, a method for pacing a patient's heart may include determining a posture of the patient and determining if the determined posture corresponds to a predetermined sleep posture. If the determined posture correspond to the predetermined sleep posture, the method may further comprise determining a respiration phase of the patient and pacing the patient's heart at a pacing rate that is modulated based on the determined respiration phase of the patient. If the determined posture does not correspond to the predetermined sleep posture, the method may pace the patient's heart at a pacing rate that is not dependent on the respiration phase of the patient.
    Type: Application
    Filed: August 26, 2016
    Publication date: March 2, 2017
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Kane, Allan Charles Shuros, Paul Huelskamp, Benjamin J. Haasl, Keith R. Maile
  • Publication number: 20170056671
    Abstract: Systems, methods, and devices for determining occurrences of a tamponade condition are disclosed. One exemplary method includes monitoring an accelerometer signal of a leadless cardiac pacemaker attached to a heart wall, determining if a tamponade condition of the patient's heart is indicated based at least in part on the monitored accelerometer signal, and in response to determining that the tamponade condition is indicated, providing a notification of the tamponade condition for use by a physician to take corrective action.
    Type: Application
    Filed: August 23, 2016
    Publication date: March 2, 2017
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Kane, Allan Charles Shuros, Brian L. Schmidt, Keith R. Maile, Benjamin J. Haasl
  • Publication number: 20170056665
    Abstract: Methods and devices for configuring the use of a motion sensor in an implantable cardiac device. The electrical signals of the patient's heart are observed and may be correlated to the physical motion of the heart as detected by the motion sensor of the implantable cardiac device in order to facilitate temporal configuration of motion sensor data collection that avoids detecting cardiac motion in favor of overall motion of the patient.
    Type: Application
    Filed: August 22, 2016
    Publication date: March 2, 2017
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Michael J. Kane, William J. Linder, Benjamin J. Haasl, Paul Huelskamp, Keith R. Maile, Ron A. Balczewski, Bin Mi, John D. Hatlestad, Allan Charles Shuros
  • Publication number: 20170056667
    Abstract: Systems, devices, and methods for determining occurrences of myocardial infarctions are disclosed. In one embodiment, a method of sensing for an occurrence of a myocardial infarction may include sensing a baseline accelerometer signal during a baseline, determining a baseline template based on one or more characteristics of the baseline accelerometer signal, and storing the baseline template in a memory. The method may further include sensing an accelerometer signal during a test period subsequent to the baseline, determining a test template based on one or more characteristics of the accelerometer signal during the test period, and comparing the baseline template with the test template, and based on the comparison, determining if a myocardial infarction occurred in the patient's heart. If it is determined that a myocardial infarction occurred in the patient's heart, the method may further include displaying an indication on a display that a myocardial infarction occurred.
    Type: Application
    Filed: August 23, 2016
    Publication date: March 2, 2017
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Kane, Allan Charles Shuros, Brian L. Schmidt, Keith R. Maile, Benjamin J. Haasl
  • Publication number: 20170035497
    Abstract: The present disclosure relates to the field of tissue mapping and ablation. Specifically, the present disclosure relates to expandable medical devices for identifying and treating local anatomical abnormalities within a body lumen. More specifically, the present disclosure relates to systems and methods of focal treatment for overactive bladders.
    Type: Application
    Filed: August 3, 2016
    Publication date: February 9, 2017
    Inventors: Sandra Nagale, Bryan Allen Clark, Allan Charles Shuros, Ding Sheng He, Dennis Byron Werner, Lynne E. Swanson, Charles A. Gibson, Amedeo J. Chiavetta, Michael Charles Peterson, Shibaji Shome, Mark W. Boden, Timothy Paul Harrah
  • Publication number: 20160082248
    Abstract: A system for use during revascularization includes a catheter having an adjustable balloon for delivery a stent, one or more pacing electrodes for delivering one or more pacing pulses to a patient's heart, and a pacemaker configured to generate the one or more pacing pulses to be delivered to the heart via the one or more pacing electrodes. The one or more pacing pulses are delivered at a rate substantially higher than the patient's intrinsic heart rate without being synchronized to the patient's intrinsic cardiac contractions, and are delivered before, during, or after an ischemic event to prevent or reduce cardiac injury.
    Type: Application
    Filed: October 28, 2015
    Publication date: March 24, 2016
    Inventors: Allan Charles Shuros, Tamara Colette Baynham, Jihong Qu, Joseph M. Pastore, Andrew P. Kramer, Frits W. Prinzen, Ward Y. R. Vanagt, Richard N. Cornelussen
  • Publication number: 20150282955
    Abstract: An endoprosthesis includes a stent having an inner surface defining a lumen and an outer surface; and a polymeric cover on the outer surface of the stent. The polymeric cover includes a base and adhesion elements. When the endoprosthesis is expanded to the expanded state in a lumen defined by a vessel wall, the adhesion elements create an interlock between the vessel wall and the endoprosthesis.
    Type: Application
    Filed: March 25, 2015
    Publication date: October 8, 2015
    Applicant: BOSTON SCIENTIFIC SCIMED INC.
    Inventors: Ismail Guler, Allan Charles Shuros, Eric A. Mokelke, Adam David Grovender, Joel P. Grover, Timothy Lawrence Rubesch
  • Publication number: 20150202444
    Abstract: An example of a system may include at least one electrode for placement on tissue in a carotid sinus region and a stimulator. The stimulator may be configured to use the at least one electrode to deliver neural stimulation to a baroreceptor region or at least one nerve innervating the baroreceptor region in the carotid sinus region to elicit a baroreflex response, and to deliver a blocking stimulation to a carotid body or at least one nerve innervating the carotid body in the carotid sinus region to inhibit a chemoreceptor response, the stimulator configured to simultaneously deliver the neural stimulation and the blocking stimulation.
    Type: Application
    Filed: January 14, 2015
    Publication date: July 23, 2015
    Inventors: Manfred Franke, Allan Charles Shuros, Eric A. Mokelke, Juan Gabriel Hincapie Ordonez, David J. Ternes
  • Publication number: 20150173636
    Abstract: An example of a system comprises a patch of electrodes for placement on tissue containing neural tissue, and a tissue tester configured to measure an electrical characteristic of tissue. The tissue tester may include a test controller and switches. The test controller and the switches may be configured to connect different combinations of the electrodes to create subsets of two or more electrodes to measure the electrical characteristic of tissue using the subsets. The test controller may be configured to measure an electrical characteristic of tissue using the subsets within the set of electrodes placed on the tissue, and compare measurements of the electrical characteristic and identify a neural target for a therapy based on the comparison of the measurements of the electrical characteristic for tissue at the neural target relative to adjacent non-neural tissue.
    Type: Application
    Filed: December 15, 2014
    Publication date: June 25, 2015
    Inventors: Eric A. Mokelke, David J. Ternes, Allan Charles Shuros, Hong Cao
  • Publication number: 20150151127
    Abstract: An implantable pacing device for delivering ventricular pacing may be configured to intermittently and variably reduce the AV delay interval used in an atrial triggered pacing mode in a manner that simulates exercise. The device may be programmed to intermittently switch to and from a variably shortened AV delay mode according to defined entry and exit conditions.
    Type: Application
    Filed: February 11, 2015
    Publication date: June 4, 2015
    Inventors: Allan Charles Shuros, Donald L. Hopper, Shantha Arcot-Krishnamurthy
  • Patent number: 8738133
    Abstract: The invention relates to cardiac rhythm management systems, and more particularly, to rate adaptive cardiac pacing systems and methods. In an embodiment, the invention includes a cardiac rhythm management device. The device can include a pulse generator for generating electrical pulses to be delivered to a heart at a pacing rate, a processor in communication with the pulse generator, and one or more sensors for sensing pulmonary function and cardiac function. The processor can be configured to increase the pacing rate if the pulmonary function is increasing with time and the cardiac function is not decreasing with time, maintain the pacing rate if the pulmonary function is increasing with time and the cardiac function is decreasing with time, and decrease the pacing rate if the respiratory function is decreasing with time.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: May 27, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan Charles Shuros, Donald L. Hopper, Michael J. Kane
  • Patent number: 8475400
    Abstract: Embodiments of the invention are related to devices and methods for modulating renal function, amongst other things. In an embodiment, the invention includes a method of modulating renal function in a patient including implanting an occlusive device in the patient, the occlusive device comprising a semi-permeable membrane and configured to expand or contract based on the passage of a fluid across the semi-permeable membrane. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: July 2, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan Charles Shuros, Eric A. Mokelke, Michael John Kane
  • Patent number: 8412325
    Abstract: Embodiments of the invention are related to medical devices and methods for delivery high-energy anti-tachycardia therapy to a subject, amongst other things. In an embodiment, the invention includes a medical device including a controller module configured to administer a plurality of electrical pulses to a patient in response to a detected tachycardia, the electrical pulses comprising an amplitude of greater than 3 Volts and less than 40 Volts, the controller configured to modulate the amplitude of the electrical pulses. In an embodiment, the invention includes a method of treating a tachyarrhythmia including administering a first series of electrical pulses to a patient with an implantable medical device, the electrical pulses including an amplitude of greater than 8 Volts and less than 40 Volts, the first series of electrical pulses having an interval of less than about 600 ms in between individual pulses. Other embodiments are also included herein.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: April 2, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan Charles Shuros, Shantha Arcot-Krishnamurthy, Dan Li
  • Patent number: 8255052
    Abstract: Embodiments of the invention are related to an implantable medical system, amongst other things. In an embodiment, the invention includes a processor, an electrical sensor, and a temperature sensor. The processor is configured to monitor myocardial electrical activity with input from the electrical sensor; identify myocardial electrical activity indicative of an arrhythmia, measure temperature of blood in the coronary venous system with input from the temperature sensor; determine if the arrhythmia is hemodynamically stable or hemodynamically unstable based on the temperature of blood in the coronary venous system, and initiate high-voltage shock therapy if the arrhythmia is hemodynamically unstable. Other embodiments are also included herein.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: August 28, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Rodney W. Salo, Allan Charles Shuros, Dan Li
  • Publication number: 20120130443
    Abstract: Methods and systems to modulate timing intervals for pacing therapy are described. For each cardiac cycle, one or both of an atrioventricular (A-V) timing interval and an atrial (A-A) timing interval are modulated to oppose beat-to-beat ventricular (V-V) timing variability. Pacing therapy is delivered using the modulated timing intervals.
    Type: Application
    Filed: January 24, 2012
    Publication date: May 24, 2012
    Inventors: Donald L. HOPPER, Yinghong YU, Allan Charles SHUROS, Shantha ARCOT-KRISHNAMURTHY, Gerrard M. CARLSON, Jeffrey STAHMANN
  • Publication number: 20120109038
    Abstract: Embodiments of the invention are related to devices and methods for modulating renal function, amongst other things. In an embodiment, the invention includes a method of modulating renal function in a patient including implanting an occlusive device in the patient, the occlusive device comprising a semi-permeable membrane and configured to expand or contract based on the passage of a fluid across the semi-permeable membrane. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: January 9, 2012
    Publication date: May 3, 2012
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Allan Charles Shuros, Eric A. Mokelke, Michael John Kane