Patents by Inventor Allen E. Eckhardt

Allen E. Eckhardt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7439014
    Abstract: The present invention relates to droplet-based surface modification and washing. According to one embodiment, a method of providing a droplet in contact with a surface with a reduced concentration of a substance is provided, wherein the method includes: (a) providing a droplet microactuator comprising a surface in contact with a droplet comprising a starting concentration and starting quantity of the substance and having a starting volume; (b) conducting one or more droplet operations to merge a wash droplet with the droplet provided in step (a) to yield a combined droplet; and (c) conducting one or more droplet operations to divide the combined droplet to yield a set of droplets comprising: (i) a droplet in contact with the surface having a decreased concentration of the substance relative to the starting concentration; and (ii) a droplet which is separated from the surface.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: October 21, 2008
    Assignees: Advanced Liquid Logic, Inc., Duke University
    Inventors: Vamsee K. Pamula, Vijay Srinivasan, Allen E. Eckhardt, Michael G. Pollack, Richard B. Fair
  • Patent number: 7297503
    Abstract: Described herein are methods of identifying a transmembrane receptor (TMR) agonist and compounds identified by this method. The TMR agonist (TMRA) is capable of activating TMR signaling while exhibiting reduced TMR internalization over a control compound.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: November 20, 2007
    Assignee: Molecular Devices Corporation
    Inventors: Carson R Loomis, Robert H. Oakley, Shuntai Wang, Allen E. Eckhardt
  • Publication number: 20070242111
    Abstract: The present invention relates to droplet-based diagnostics. According to one embodiment, a droplet microactuator system is provided and includes: (a) a droplet microactuator configured to conduct droplet operations; and (b) a sensor configured in a sensing relationship with the droplet microactuator, such that the sensor is capable of sensing a signal from and/or a property of one or more droplets on the droplet microactuator.
    Type: Application
    Filed: December 15, 2006
    Publication date: October 18, 2007
    Inventors: Vamsee K. Pamula, Vijay Srinivasan, Michael G. Pollack, Allen E. Eckhardt, Philip Y. Paik
  • Publication number: 20070243634
    Abstract: The present invention relates to droplet-based surface modification and washing. According to one embodiment, a method of providing a droplet in contact with a surface with a reduced concentration of a substance is provided, wherein the method includes: (a) providing a droplet microactuator comprising a surface in contact with a droplet comprising a starting concentration and starting quantity of the substance and having a starting volume; (b) conducting one or more droplet operations to merge a wash droplet with the droplet provided in step (a) to yield a combined droplet; and (c) conducting one or more droplet operations to divide the combined droplet to yield a set of droplets comprising: (i) a droplet in contact with the surface having a decreased concentration of the substance relative to the starting concentration; and (ii) a droplet which is separated from the surface.
    Type: Application
    Filed: December 15, 2006
    Publication date: October 18, 2007
    Inventors: Vamsee K. Pamula, Vijay Srinivasan, Allen E. Eckhardt, Michael G. Pollack, Richard B. Fair
  • Publication number: 20070241068
    Abstract: The present invention relates to droplet-based washing. According to one embodiment, a method of providing a droplet in contact with a surface with a reduced concentration of a substance is provided, wherein the method includes: (a) providing a surface in contact with a droplet comprising a starting concentration and starting quantity of the substance and having a starting volume; (b) conducting one or more droplet operations to merge a wash droplet with the droplet provided in step (a) to yield a combined droplet; and (c) conducting one or more droplet operations to divide the combined droplet to yield a set of droplets comprising: (i) a droplet in contact with the surface having a decreased concentration of the substance relative to the starting concentration; and (ii) a droplet which is separated from the surface.
    Type: Application
    Filed: December 15, 2006
    Publication date: October 18, 2007
    Inventors: Vamsee K. Pamula, Vijay Srinivasan, Allen E. Eckhardt, Michael G. Pollack, Richard B. Fair
  • Publication number: 20040241738
    Abstract: A method of detecting binding interactions and target molecules, such as proteins, protein fragments, recombinant proteins, recombinant protein fragments, extracellular matrix proteins, ligands, carbohydrates, steroids, hormones, drugs, drug candidates, immunoglobulins and receptors of eukaryotic, prokaryotic or viral origin, by mediated electrochemistry using labels that react with transition metal mediator complexes in a detectable catalytic redox reaction. These labels are attached directly to binders, target molecules, surrogate target molecules, or to affinity ligands capable of binding to the target or to surrogate target molecules capable of competing with the target for binding to another binder. The labels can be naturally present (endogenous) in the binder, target or affinity ligand, or constructed by the covalent attachment of the label to the binder, target, affinity ligand or surrogate target (exogenous).
    Type: Application
    Filed: July 2, 2004
    Publication date: December 2, 2004
    Inventors: David H. Stewart, John W. Groelke, H. Holden Thorp, Allen E. Eckhardt
  • Publication number: 20020182606
    Abstract: A method determining the presence or absence of a single nucleotide polymorphism at a SNP site in a nucleic acid target. Capture probes are designed, each of which has a different SNP base and a sequence of probe bases on each side of the SNP base. The probe bases are complementary to the corresponding target sequence adjacent to the SNP site. Each capture probe is immobilized on a different electrode having a non-conductive outer layer on a conductive working surface of a substrate. The extent of hybridization between each capture probe and the nucleic acid target is detected by detecting the oxidation-reduction reaction at each electrode, utilizing a transition metal complex. These differences in the oxidation rates at the different electrodes are used to determine whether the selected nucleic acid target has a single nucleotide polymorphism at the selected SNP site.
    Type: Application
    Filed: June 4, 2001
    Publication date: December 5, 2002
    Applicant: Xanthon, Inc.
    Inventor: Allen E. Eckhardt
  • Patent number: 6387625
    Abstract: An electrode for detecting interactions between members of a binding pair, which electrode has been modified by formation of a non-conductive self-assembled monolayer, and a method of detecting biomolecules, such as nucleic acids or other targets, including receptors, ligands, antigens or antibodies, utilizing such an electrode. When contacted with a target nucleic acid, an oligonucleotide probe coupled to the self-assembled monolayer reacts with the target nucleic acid form a hybridized nucleic acid on the modified electrode surface. The hybridized nucleic acid is reacted with a transition metal complex capable of oxidizing a preselected base in the hybridized nucleic acid in an oxidation-reduction reaction, the oxidation-reduction reaction is detected, and the presence or absence of the nucleic acid is determined from the detected oxidation-reduction reaction.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: May 14, 2002
    Assignees: The University of North Carolina at Chapel Hill, Xanthon, Inc.
    Inventors: Allen E. Eckhardt, Jill C. Mikulecky, Mary E. Napier, Robert S. Thomas, H. Holden Thorp
  • Publication number: 20020037530
    Abstract: A method of detecting binding interactions and target molecules, such as proteins, protein fragments, recombinant proteins, recombinant protein fragments, extracellular matrix proteins, ligands, carbohydrates, steroids, hormones, drugs, drug candidates, immunoglobulins and receptors of eukaryotic, prokaryotic or viral origin, by mediated electrochemistry using labels that react with transition metal mediator complexes in a detectable catalytic redox reaction. These labels are attached directly to binders, target molecules, surrogate target molecules, or to affinity ligands capable of binding to the target or to surrogate target molecules capable of competing with the target for binding to another binder. The labels can be naturally present (endogenous) in the binder, target or affinity ligand, or constructed by the covalent attachment of the label to the binder, target, affinity ligand or surrogate target (exogenous).
    Type: Application
    Filed: November 16, 2001
    Publication date: March 28, 2002
    Inventors: David H. Stewart, John W. Groelke, H. Holden Thorp, Allen E. Eckhardt
  • Patent number: 6346387
    Abstract: A method of detecting binding interactions and target molecules, such as proteins, protein fragments, recombinant proteins, recombinant protein fragments, extracellular matrix proteins, ligands, carbohydrates, steroids, hormones, drugs, drug candidates, immunoglobulins and receptors of eukaryotic, prokaryotic or viral origin, by mediated electrochemistry using labels that react with transition metal mediator complexes in a detectable catalytic redox reaction. These labels are attached directly to binders, target molecules, surrogate target molecules, or to affinity ligands capable of binding to the target or to surrogate target molecules capable of competing with the target for binding to another binder. The labels can be naturally present (endogenous) in the binder, target or affinity ligand, or constructed by the covalent attachment of the label to the binder, target, affinity ligand or surrogate target (exogenous).
    Type: Grant
    Filed: November 24, 2000
    Date of Patent: February 12, 2002
    Assignees: Xanthon, Inc., The University of North Carolina at Chapel Hill
    Inventors: David H. Stewart, John W. Groelke, H. Holden Thorp, Allen E. Eckhardt
  • Patent number: 6127127
    Abstract: An electrode for detecting interactions between members of a binding pair, which electrode has been modified by formation of a non-conductive self-assembled monolayer, and a method of detecting biomolecules, such as nucleic acids or other targets, including receptors, ligands, antigens or antibodies, utilizing such an electrode. When contacted with a target nucleic acid, an oligonucleotide probe coupled to the self-assembled monolayer reacts with the target nucleic acid to form a hybridized nucleic acid on the modified electrode surface. The hybridized nucleic acid is reacted with a transition metal complex capable of oxidizing a preselected base in the hybridized nucleic acid in an oxidation-reduction reaction, the oxidation-reduction reaction is detected, and the presence or absence of the nucleic acid is determined from the detected oxidation-reduction reaction.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: October 3, 2000
    Assignees: The University of North Carolina at Chapel Hill, Xanthon, Inc.
    Inventors: Allen E. Eckhardt, Jill C. Mikulecky, Mary E. Napier, Robert S. Thomas, H. Holden Thorp