Patents by Inventor Alois Herkommer

Alois Herkommer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230341668
    Abstract: An optical element (100) is provided comprising a first surface (102) for emitting and/or receiving electromagnetic radiation, the first surface being arranged for optically coupling to, or being optically coupled to, a portion of an optical fibre (104) having an axis. The optical element (100) comprising a second surface (106) positioned for emitting and/or receiving electromagnetic radiation in a direction transversal to the axis of the optical fibre (104), wherein the optical element (100) has a first focal length for electromagnetic radiation emitted and/or received by an inner portion of the second surface (106) and a second focal length for electromagnetic radiation emitted and/or received by an outer portion of the second surface (106), the first and second focal lengths being different focal lengths. A method of forming an optical device comprising the optical element (100) and further comprising an optical fibre coupled to the optical element is also provided.
    Type: Application
    Filed: July 23, 2021
    Publication date: October 26, 2023
    Inventors: Jiawen Li, Robert McLaughlin, Simon Thiele, Alois Herkommer, Harald Gießen
  • Patent number: 11536882
    Abstract: A method of fabricating an imaging system as well as to a corresponding imaging system. The method includes providing a substrate; and forming, by means of a 3D-printing technique, a 3D structure on the substrate, wherein the forming of the 3D structure includes forming a stack of at least two diffractive optical elements in a single printing step.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: December 27, 2022
    Assignee: BADEN-WÜRTTEMBERG STIFTUNG GGMBH
    Inventors: Simon Thiele, Harald Giessen, Christof Pruss, Alois Herkommer
  • Patent number: 11406249
    Abstract: An endoscope includes a shaft having a distal end, an optical imaging device at the distal end of the shaft for producing a real image of an object observed by means of the endoscope and at least one of an image transfer device for transmitting the real image and an image sensor for capturing the real image. The imaging device has curved light-refracting interfaces, which are tilted in relation to one another.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: August 9, 2022
    Assignees: KARL STORZ SE & CO. KG, UNIVERSITAT STUTTGART
    Inventors: Harald Gießen, Alois Herkommer, Simon Thiele, Klaus Irion, Werner Göbel, Benjamin Häsler
  • Patent number: 11248900
    Abstract: The present invention relates to a method and an assembly for chromatic confocal spectral interferometery, in particular also for spectral domain OCT (SD-OCT) using multi-spectral light. A multiple (e.g. two, three, four, etc.) axial splitting of foci in the interferometric object arm is performed using a multifocal (e.g. bifocal, trifocal, quattro-focal, etc.) optical component, forming thereby at least two, three or even several groups of chromatically split foci in the depth direction. The multifocal optical component is made of a diffractive optical element (712) and a Schwarzschild objective (5). At least two, three, four or even more differently colored foci of different groups of foci coincide in at least one confocal point in the object space of the setup.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: February 15, 2022
    Assignee: Universität Stuttgart
    Inventors: Klaus Körner, Daniel Claus, Alois Herkommer, Christof Pruss
  • Publication number: 20200378743
    Abstract: The present invention relayes to a method and an assembly for chromatic confocal spectral interferometery, in particular also for spectral domain OCT (SD-OCT) using multi-spectral light. A multiple (e.g. two, three, four, etc.) axial splitting of foci in the interferometric object arm is performed using a multifocal (e.g. bifocal, trifocal, quattro-focal, etc.) optical component, forming thereby at least two, three or even several groups of chromatically split foci in the depth direction. The multifocal optical component is made of a diffractive optical element (712) and a Schwarzschild objective (5). At least two, three, four or even more differently colored foci of different groups of foci coincide in at least one confocal point in the object space of the setup.
    Type: Application
    Filed: December 18, 2017
    Publication date: December 3, 2020
    Inventors: Klaus KÖRNER, Daniel CLAUS, Alois HERKOMMER, Christof PRUSS
  • Publication number: 20200166679
    Abstract: The present invention relates to a method of fabricating an imaging system as well as to a corresponding imaging system. The method comprises the steps of:—providing a substrate;—forming, by means of a 3D-printing technique, a 3D-structure (100) on the substrate, wherein the forming of the 3D-structure (100) comprises forming a stack of at least two diffractive optical elements (10) in a single printing step.
    Type: Application
    Filed: July 18, 2017
    Publication date: May 28, 2020
    Inventors: Simon Thiele, Harald Giessen, Christof Pruss, Alois Herkommer
  • Publication number: 20190350442
    Abstract: An endoscope includes a shaft having a distal end, an optical imaging device at the distal end of the shaft for producing a real image of an object observed by means of the endoscope and at least one of an image transfer device for transmitting the real image and an image sensor for capturing the real image. The imaging device has curved light-refracting interfaces, which are tilted in relation to one another.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 21, 2019
    Inventors: Harald Gießen, Alois Herkommer, Simon Thiele, Klaus Irion, Werner Göbel, Benjamin Häsler
  • Patent number: 9923330
    Abstract: This disclosure relates to pumping light systems and methods for using a disc laser. A focusing device with a reflecting surface focuses a pumping light beam onto a laser-active medium. A deflecting system deflects the pumping light beam between reflecting regions formed on the reflecting surface that are arranged in different angle regions around a central axis of the reflecting surface in at least a first annular region and a second annular region. The deflecting systems are configured to perform at least one deflection of the pumping light beam between two reflecting regions of the first annular region and at least one deflection between two reflecting regions of the second annular region.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: March 20, 2018
    Assignee: TRUMPF LASER GMBH
    Inventors: Sven-Silvius Schad, Alois Herkommer, Matthias Ackermann
  • Publication number: 20170310069
    Abstract: This disclosure relates to pumping light systems and methods for using a disc laser. A focusing device with a reflecting surface focuses a pumping light beam onto a laser-active medium. A deflecting system deflects the pumping light beam between reflecting regions formed on the reflecting surface that are arranged in different angle regions around a central axis of the reflecting surface in at least a first annular region and a second annular region. The deflecting systems are configured to perform at least one deflection of the pumping light beam between two reflecting regions of the first annular region and at least one deflection between two reflecting regions of the second annular region.
    Type: Application
    Filed: April 26, 2017
    Publication date: October 26, 2017
    Inventors: Sven-Silvius Schad, Alois Herkommer, Matthias Ackermann
  • Patent number: 9772275
    Abstract: Disclosed herein is a measuring probe and an arrangement for measuring spectral absorption, preferably in the infrared. Furthermore, the invention relates to a method for spectroscopically measuring absorption. The measuring probe may comprise a cutting apparatus configured to cut a slice or respectively flap off of a sample to be measured; a measuring gap configured to accommodate the sample slice; an optical window element for coupling measuring light into, or respectively out of the measuring gap; and an end reflector designed and arranged to reflect the measuring light propagated through the measuring gap back into the measuring gap. The arrangement for measuring spectral absorption may comprise the measuring probe, a light source and an apparatus for the spectral analysis of the measuring light coupled out of the measuring gap.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: September 26, 2017
    Assignee: Universität Stuttgart
    Inventors: Klaus Koerner, Christof Pruss, Alois Herkommer, Wolfgang Osten, Daniel Claus
  • Publication number: 20160143539
    Abstract: Disclosed herein is a measuring probe, an apparatus, and a method for infrared spectroscopy. In some embodiments the measuring probe may have an elongated form with a first end for coupling and decoupling infrared light into and out of the measuring probe and a second end. In other embodiments, the measuring probe may comprise an attenuated total reflection (ATR) prism arranged at the second end of the measuring probe. The ATR prism may include at least a first surface having at least one measuring portion configured to be brought in optical contact with a measured object. The ATR prism may include at least a second surface having at least one reflective portion. In some embodiments, the ATR prism may include a cutting portion for cutting through the measured object.
    Type: Application
    Filed: November 9, 2015
    Publication date: May 26, 2016
    Inventors: Klaus Koerner, Daniel Claus, Alois Herkommer, Wolfgang Osten
  • Publication number: 20160076997
    Abstract: Disclosed herein is a measuring probe and an arrangement for measuring spectral absorption, preferably in the infrared. Furthermore, the present disclosure relates to a method for spectroscopically measuring absorption. In some embodiments, the measuring probe may comprise a cutting apparatus configured to cut a slice or respectively flap off of a sample to be measured; a measuring gap configured to accommodate the sample slice; an optical window element for coupling measuring light into, or respectively out of the measuring gap; and an end reflector designed and arranged to reflect the measuring light propagated through the measuring gap back into the measuring gap. The arrangement for measuring spectral absorption may comprise the measuring probe, a light source and an apparatus for the spectral analysis of the measuring light coupled out of the measuring gap.
    Type: Application
    Filed: August 31, 2015
    Publication date: March 17, 2016
    Inventors: Klaus Koerner, Christof Pruss, Alois Herkommer, Wolfgang Osten, Daniel Claus
  • Patent number: 9110225
    Abstract: A metrology system serves to examine an object arranged in an object field using EUV illumination light. An illumination optics of the metrology system has a collector mirror which is arranged in the beam path directly downstream of an EUV light source. Downstream of the collector mirror, less than three additional illumination mirrors are arranged in the beam path between the collector mirror and the object field. An intermediate focus is arranged in the beam path between the collector mirror and the additional illumination mirror. The metrology system further includes a magnifying imaging optics for imaging the object field into an image field in an image plane. As a result a metrology system is obtained which comprises an illumination optics that ensures an efficient illumination of the object field by means of illumination parameters which are well adapted to the illumination situation of current EUV projection exposure apparatuses.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: August 18, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hans-Jürgen Mann, Alois Herkommer
  • Publication number: 20130063716
    Abstract: A metrology system serves to examine an object arranged in an object field using EUV illumination light. An illumination optics of the metrology system has a collector mirror which is arranged in the beam path directly downstream of an EUV light source. Downstream of the collector mirror, less than three additional illumination mirrors are arranged in the beam path between the collector mirror and the object field. An intermediate focus is arranged in the beam path between the collector mirror and the additional illumination mirror. The metrology system further includes a magnifying imaging optics for imaging the object field into an image field in an image plane. As a result a metrology system is obtained which comprises an illumination optics that ensures an efficient illumination of the object field by means of illumination parameters which are well adapted to the illumination situation of current EUV projection exposure apparatuses.
    Type: Application
    Filed: April 12, 2011
    Publication date: March 14, 2013
    Inventors: Hans-Jürgen Mann, Alois Herkommer
  • Publication number: 20120274917
    Abstract: An imaging optics is provided for lithographic projection exposure for guiding a bundle of imaging light with a wavelength shorter than 193 nm via a plurality of mirrors for beam-splitter-free imaging of a reflective object in an object field in an object plane into an image field in an image plane. An object field point has a central ray angle which is smaller than 3°. At least one of the mirrors is a near-field mirror. The imaging optics which can allow for high-quality imaging of a reflective object.
    Type: Application
    Filed: May 29, 2012
    Publication date: November 1, 2012
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Hans-Juergen Mann, Martin Endres, David Shafer, Berndt Warm, Alois Herkommer
  • Patent number: 8289520
    Abstract: A spectrometer arrangement for measuring a spectrum of a light beam emitted by a narrowband light source, such as a bandwidth-narrowed laser, includes at least one etalon, a beam splitter for splitting the light beam into a first partial beam and a second partial beam, one or more optical directing elements for directing the first partial beam n times and the second partial beam (n+k) times through the at least one etalon, wherein n and k are integers ?1. The spectrometer arrangement further has at least one light-sensitive detector and an evaluation device for evaluating the spectra—recorded by the at least one detector—of the first partial beam that has passed through the at least one etalon n times and of the second partial beam that has passed through the at least one etalon (n+k) times in order to determine the light spectrum corrected for the apparatus function of the at least one etalon.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: October 16, 2012
    Assignee: Carl Zeiss Laser Optics GmbH
    Inventors: Johannes Kraus, Alois Herkommer, Bernhard Weigl, Michel Le Maire, Holger Muenz
  • Patent number: 8141785
    Abstract: The invention relates to an optical delay module for lengthening the propagation path of a light beam comprises a first spherical mirror and a second spherical mirror, the first spherical mirror and the second spherical mirror having equal radii of curvature, the first and the second mirror being arranged on a common axis of symmetry with concave sides of the first and second mirrors being situated opposite one another at a distance from one another which corresponds to the radii of curvature of the first and second mirrors. The module also includes a coupling-in area for coupling the light beam into a space between the first and second mirrors and a coupling-out area for coupling the light beam out of the space between the first and second mirrors.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: March 27, 2012
    Assignee: Carl Zeiss Laser Optics GmbH
    Inventors: Alois Herkommer, Holger Muenz
  • Patent number: 7864429
    Abstract: In one aspect, the disclosure features an optical system configured to create from a beam of light an intensity distribution on a surface, whereby the optical system comprises at least a first optical element which splits the incident beam into a plurality of beams some of which at least partially overlap in a first direction on said surface and whereby the optical system further comprises at least a second optical element which displaces at least one of said beams in a second direction on said surface.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: January 4, 2011
    Assignee: Carl Zeiss Laser Optics GmbH
    Inventors: Holger Muenz, Alois Herkommer, Rafael Egger
  • Publication number: 20100079765
    Abstract: A spectrometer arrangement for measuring a spectrum of a light beam emitted by a narrowband light source, such as a bandwidth-narrowed laser, includes at least one etalon, a beam splitter for splitting the light beam into a first partial beam and a second partial beam, one or more optical directing elements for directing the first partial beam n times and the second partial beam (n+k) times through the at least one etalon, wherein n and k are integers ?1. The spectrometer arrangement further has at least one light-sensitive detector and an evaluation device for evaluating the spectra—recorded by the at least one detector—of the first partial beam that has passed through the at least one etalon n times and of the second partial beam that has passed through the at least one etalon (n+k) times in order to determine the light spectrum corrected for the apparatus function of the at least one etalon.
    Type: Application
    Filed: September 14, 2009
    Publication date: April 1, 2010
    Applicant: CARL ZEISS LASER OPTICS GMBH
    Inventors: Johannes Kraus, Alois Herkommer, Bernhard Weigl, Michel Le Maire, Holger Muenz
  • Patent number: RE41350
    Abstract: An objective comprising axial symmetry, at least one curved mirror and at least one lens and two intermediate images. The objective includes two refractive partial objectives and one catadioptric partial objective. The objective includes a first partial objective, a first intermediate a image, a second partial objective, a second intermediate image, and a third partial objective. At least one of the partial objectives is purely refractive. One of the partial objectives is purely refractive and one is purely catoptric.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: May 25, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: David R. Shafer, Alois Herkommer, Karl-Heinz Schuster, Gerd Füerter, Rudolph Von Büenau, Wilhelm Ulrich