Patents by Inventor ALOK RANJAN

ALOK RANJAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210027991
    Abstract: In one embodiment, a plasma processing system includes a plasma processing chamber, a substrate holder disposed in the plasma processing chamber, a coil disposed over the plasma processing chamber, and a plurality of taps configured to contact the coil at an associated contact region. The plasma processing system is configured to sustain a plasma by selecting a subset of taps from the plurality of taps to apply a power source and a reference potential.
    Type: Application
    Filed: July 24, 2019
    Publication date: January 28, 2021
    Inventors: Peter Ventzek, Alok Ranjan, Mitsunori Ohata, Michael Hummel
  • Publication number: 20210020448
    Abstract: Described herein is an innovative method smoothing substrate surfaces. The surfaces to be smoothed may be a surface of a patterned feature of the substrate or may be an unpatterned surface of the substrate. The techniques disclosed utilize atomic layer deposition (ALD) techniques to smooth surfaces. For example, the use of ALD to smooth the line edge roughness of a patterned feature or roughness of a surface of an unpatterned layer is described. ALD can grow high quality films with atomic level thickness controllability and conformality. The rough, sharp asperities on patterned features (for example on sidewalls or tops of a patterned feature) or on a surface can be smoothed by precisely growing material layer by layer over the rough surface. Thus, asperities on a surface may be smoothed, improving the manufacturability and/or device performance.
    Type: Application
    Filed: July 16, 2019
    Publication date: January 21, 2021
    Inventors: Qiaowei Lou, Angelique Raley, Alok Ranjan
  • Publication number: 20210020405
    Abstract: In one embodiment, a plasma processing apparatus includes a plasma processing chamber that includes a first portion and a second portion. The first portion includes sidewalls and a top cover having a through hole. The second portion is coupled to the first portion via the through hole. A substrate holder is disposed in the first portion of the plasma processing chamber. A first coil is disposed over the first portion and a second coil is disposed over the first portion and around the second portion.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 21, 2021
    Inventors: Peter Ventzek, Mitsunori Ohata, Alok Ranjan
  • Publication number: 20210013005
    Abstract: In one exemplary embodiment described herein are innovative plasma processing methods and system that utilize direct measurement of direct current (DC) field or self-bias voltage (Vdc) in a plasma processing chamber. In one embodiment, a non-plasma contact measurement using the electric field effect from Vdc is provided. The Vdc sensing method may be robust to a variety of process conditions. In one embodiment, the sensor is integrated with any focus ring material (for example, quartz or doped-undoped silicon). Robust extraction of the Vdc measurement signal may be used for process control. In one embodiment, the sensor may be integrated, at least in part, with the substrate being processed in the chamber.
    Type: Application
    Filed: July 9, 2019
    Publication date: January 14, 2021
    Inventors: Merritt Funk, Peter Ventzek, Alok Ranjan, Barton Lane, Justin Moses, Chelsea DuBose
  • Publication number: 20200394425
    Abstract: This disclosure relates generally to method and system for detecting on-street parking violations. The method include capturing, by using an media capturing device embodied in an electronic device mounted in a vehicle, a video stream of a scene during a trip of the vehicle. The video stream is processed at the electronic device to identify target objects such as no-parking signage and vehicles parked in the vicinity thereof. A meta-information associated with the target objects is stored in form of a short-term historian in a repository associated with the electronic device. The absolute locations of the target objects are determined and the historian is updated with the values of the absolute locations. A set of unique target objects is determined from amongst the target objects and a meta-information associated with the unique objects is sent to a cloud server for determining parking violations.
    Type: Application
    Filed: December 13, 2019
    Publication date: December 17, 2020
    Applicant: Tata Consultancy Services Limited
    Inventors: Prasant Kumar MISRA, Arunchandar VASAN, Krishna Kumar SUNIL KOMDAM, Anand SIVASUBRAMANIAM, Alok RANJAN
  • Patent number: 10860060
    Abstract: An apparatus includes a housing, at least one processing device disposed within the housing and comprising a processor coupled to a memory, one or more sensors communicatively coupled to the processing device, one or more batteries configured to provide electrical power to the processing device, and one or more battery position actuators configured to modify a positioning of the one or more batteries relative to the housing. The processing device is configured to perform steps of obtaining information from the one or more sensors characterizing an operating state of the apparatus, monitoring the obtained information to detect one or more designated conditions affecting a health of the one or more batteries, and, responsive to detecting at least one of the one or more designated conditions, triggering the one or more battery position actuators to modify the positioning of the one or more batteries relative to the housing.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: December 8, 2020
    Assignee: EMC IP Holding Company LLC
    Inventors: Alok Ranjan, Dinesh Kanayalal, Anshul Saxena
  • Publication number: 20200381261
    Abstract: A method for treating a substrate includes receiving a substrate in a vacuum process chamber. The substrate includes a III-V film layer disposed on the substrate. The III-V film layer includes an exposed surface, an interior portion underlying the exposed surface, and one or more of the following: Al, Ga, In, N, P, As, Sb, Si, or Ge. The method further includes altering the chemical composition of the exposed surface and a fraction of the interior portion of the III-V film layer to form an altered portion of the III-V film layer using a hydrogen-based plasma treatment, removing the altered portion of the III-V film layer using a chlorine-based plasma treatment, and repeating the altering and removing of the III-V film layer until a predetermined amount of the III-V film layer is removed from the substrate.
    Type: Application
    Filed: April 13, 2020
    Publication date: December 3, 2020
    Inventors: Peter Ventzek, Alok Ranjan
  • Publication number: 20200365372
    Abstract: An apparatus comprises an electron source chamber, an electron-beam sustained plasma (ESP) processing chamber, and a dielectric injector disposed between the electron source chamber and the ESP processing chamber. The dielectric injector comprises a first flared input region comprising a wide entry opening and a narrow exit opening. The wide entry opening opens into to the electron source chamber. The first flared input region is radially symmetric about a longitudinal axis of the dielectric injector. The dielectric injector further comprises a first parallel region comprising an input opening and an output opening. The input opening is adjacent to the narrow exit opening. The output opening is disposed opposite of the input opening. The first parallel region is cylindrical.
    Type: Application
    Filed: May 14, 2019
    Publication date: November 19, 2020
    Inventors: Zhiying Chen, Joel Blakeney, Peter Ventzek, Alok Ranjan, Kazuya Nagaseki
  • Publication number: 20200365369
    Abstract: A method of plasma processing comprises generating electrons in a source chamber, generating an electric potential gradient between the source chamber and a processing chamber by applying a first negative direct current (DC) voltage to the source chamber and a ground voltage to the processing chamber, accelerating the electrons from the source chamber through a dielectric injector and into the processing chamber using the electric potential gradient, and generating an electron-beam sustained plasma (ESP) in the processing chamber using the electrons from the source chamber.
    Type: Application
    Filed: May 14, 2019
    Publication date: November 19, 2020
    Inventors: Zhiying Chen, Joel Blakeney, Megan Carruth, Peter Ventzek, Alok Ranjan, Kazuya Nagaseki
  • Patent number: 10818507
    Abstract: Embodiments provide isotropic and selective etching of silicon nitride layers for the manufacture of microelectronic workpieces through sequential exposure of silicon nitride layers to plasma including hydrogen radicals and plasma including fluorine radicals. For example, the sequential application of plasma etch steps can use: (1) a first plasma gas including hydrogen (H2) and argon (Ar), and (2) a second plasma gas including nitrogen trifluoride (NF3), oxygen (O2), and Ar. These plasma gases are ignited within a processing region or chamber under sufficient pressure to generate the hydrogen radicals and the fluorine radicals. Other plasma gas chemistries can also be used under sufficient pressures to generate alternating application of hydrogen radicals and fluorine radicals.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: October 27, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Sonam D. Sherpa, Alok Ranjan
  • Patent number: 10818502
    Abstract: Systems and methods are disclosed for plasma discharge ignition to reduce surface particles and thereby decrease defects introduced during plasma processing. A microelectronic workpiece is positioned on a holder within a process chamber that includes a first radio frequency (RF) power source configured to couple RF power to a top portion of the process chamber, a second RF power source configured to couple RF power to the holder, and a direct current (DC) power supply. Initially, a process gas for plasma process is flowed into the process chamber. The process gas is ignited to form plasma by activating the second RF power source to apply RF power to the holder. Subsequently, the microelectronic workpiece is clamped to the holder by applying the positive voltage to the holder with the DC power supply, and the first RF power source is activated to maintain the plasma within the process chamber.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: October 27, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Sergey Voronin, Jason Marion, Yusuke Yoshida, Alok Ranjan, Takashi Enomoto, Yoshio Ishikawa
  • Patent number: 10818482
    Abstract: Methods are disclosed to detect plasma light emissions during plasma processing, to analyze light intensity data associated with the plasma source, and to adjust operating parameters for the plasma source and/or the process chamber based upon light intensity distributions associated with the plasma processing. The light intensity distributions for the plasma sources and related analysis can be conducted across multiple processing tools. For some embodiments, plasma discharge stability and/or chamber-to-chamber matching information is determined based upon light intensity data, and the operation of the processing tools are adjusted or controlled based upon stability and/or matching determinations. The disclosed embodiments thereby provide simple, low-cost solutions to assess and improve plasma sources and discharge stability for plasma processing tools such as plasma etch and deposition tools.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: October 27, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Yusuke Yoshida, Jason Marion, Sergey Voronin, Alok Ranjan
  • Patent number: 10811269
    Abstract: Sidewall etching of substrate features may be achieved by employing an etch stop layer formed over the features. The etch stop layer is thinner on sidewalls of the features as compared to the bottom of the features. The lateral etching of the features is achieved by use of an over etch which breaks through the etch stop layer on the sidewalls of the features but does not break through the etch stop layer formed at the bottom of the features. The use of the etch stop layer allows for lateral etching while preventing unwanted vertical etching. The lateral etching may be desirable for use in a number of structures, including but not limited to 3D structures. The lateral etching may also be used to provide vertical sidewalls by reducing the sidewall taper angle.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: October 20, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Shyam Sridhar, Nayoung Bae, Sergey Voronin, Alok Ranjan
  • Patent number: 10811273
    Abstract: Provided is a method of modifying a surface of a substrate for improved etch selectivity of nitride etching. In an embodiment, the method includes providing a substrate with a nitride-containing structure, the nitride-containing structure having an oxygen-nitrogen layer. The method may also include performing a surface modification process on the nitride-containing structure with the oxygen-nitrogen layer using one or more gases, the surface modification process generating a cleaned nitride-containing structure. Additionally, the method may include performing a nitride etch process using the cleaned nitride-containing structure, wherein the etched nitride-containing structure are included in 5 nm or lower technology nodes, and the nitride etch process meets target etch rate and target etch selectivity, and the cleaned nitride-containing structure meet target residue cleaning objectives.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: October 20, 2020
    Assignee: Tokyo Electron Limited
    Inventors: Christopher Talone, Erdinc Karakas, Andrew Nolan, Sergey A. Voronin, Alok Ranjan
  • Patent number: 10777385
    Abstract: Embodiments of systems and methods for RF power distribution in a multi-zone electrode array are described. A system may include a plasma source configured to generate a plasma field. Also, the system may include an RF power source coupled to the plasma source and configured to supply RF power to the plasma source. The system may also include a source controller coupled to the RF power source and configured to control modulation of the RF power supplied to the plasma source to enhance uniformity of a plasma field generated by the plasma source.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: September 15, 2020
    Assignee: Tokyo Electron Limited
    Inventors: Sergey Voronin, Alok Ranjan
  • Patent number: 10770305
    Abstract: In one exemplary embodiment, described herein is an ALE process for etching an oxide. In one embodiment, the oxide is silicon oxide. The ALE modification step includes the use of a carbon tetrafluoride (CF4) based plasma. This modification step preferentially removes oxygen from the surface of the silicon oxide, providing a silicon rich surface. The ALE removal step includes the use of a hydrogen (H2) based plasma. This removal step removes the silicon enriched monolayer formed in the modification step. The silicon oxide etch ALE process utilizing CF4 and H2 steps may be utilized in a wide range of substrate process steps. For example, the ALE process may be utilized for, but is not limited to, self-aligned contact etch steps, silicon fin reveal steps, oxide mandrel pull steps, oxide spacer trim, and oxide liner etch.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: September 8, 2020
    Assignee: Tokyo Electron Limited
    Inventors: Sonam D. Sherpa, Alok Ranjan
  • Publication number: 20200273678
    Abstract: Methods and systems are disclosed for focus ring thickness measurement and feedback control within process chambers. For disclosed embodiments, in-chamber sensors measure physical parameters associated with focus rings, and these measurements are used to determine thickness for the focus rings. The thickness determinations can be used to detect when a focus ring should be replaced and can also be used as feedback to adjust the position of the focus rings within the chamber. For one embodiment, measurements from ultrasonic sensors are used to make thickness determinations for focus rings. For further embodiments, these ultrasonic sensors are positioned at end portions of focus ring lift pins. Other sensors can also be used such as capacitive sensors, resistive sensors, and/or other desired sensors. Further variations and implementations can also be achieved using in-chambers sensors to facilitate focus ring thickness determinations.
    Type: Application
    Filed: May 7, 2019
    Publication date: August 27, 2020
    Inventors: Merritt Funk, Alok Ranjan, Barton Lane, Peter Ventzek, Justin Moses, Chelsea DuBose
  • Publication number: 20200273711
    Abstract: In one example, a method of processing a substrate includes receiving a substrate in a processing chamber, the substrate having an etch mask positioned over an underlying layer to be etched, where the underlying layer is a silicon-containing layer. The method includes executing a first etch process that includes forming a first plasma from a first process gas that includes hydrogen bromide or chlorine and etching the underlying layer using products of the first plasma. The method includes executing a second etch process that includes forming a second plasma from a second process gas that includes fluorine and etching the substrate using products from the second plasma. The method may include alternating between the first etch process and the second etch process.
    Type: Application
    Filed: February 18, 2020
    Publication date: August 27, 2020
    Inventors: Yusuke Yoshida, Sergey Voronin, Shyam Sridhar, Caitlin Philippi, Christopher Talone, Alok Ranjan
  • Publication number: 20200273992
    Abstract: Residue at the base of a feature in a substrate to be etched is limited so that improved profiles may be obtained when forming vertical, narrow pitch, high aspect ratio features, for example fin field effect transistor (FinFET) gates. A thin bottom layer of the feature is formed of a different material than the main layer of the feature. The bottom material may be comprised of a material that preferentially etches and/or preferentially oxidizes as compared to the main layer. The bottom layer may comprise silicon germanium. The preferential etching characteristics may provide a process in which un-etched residuals do not remain. Even if residuals remain, after etch of the feature, an oxidation process may be performed. Enhanced oxidation rates of the bottom material allow any remaining residual to be oxidized. Plasma oxidation may be used. The oxidized material may then be removed by utilizing standard oxide removal mechanisms.
    Type: Application
    Filed: February 5, 2020
    Publication date: August 27, 2020
    Inventors: Sergey Voronin, Christopher Catano, Sang Cheol Han, Shyam Sridhar, Yusuke Yoshida, Christopher Talone, Alok Ranjan
  • Publication number: 20200273713
    Abstract: In one exemplary embodiment, described herein is an ALE process for etching an oxide. In one embodiment, the oxide is silicon oxide. The ALE modification step includes the use of a carbon tetrafluoride (CF4) based plasma. This modification step preferentially removes oxygen from the surface of the silicon oxide, providing a silicon rich surface. The ALE removal step includes the use of a hydrogen (H2) based plasma. This removal step removes the silicon enriched monolayer formed in the modification step. The silicon oxide etch ALE process utilizing CF4 and H2 steps may be utilized in a wide range of substrate process steps. For example, the ALE process may be utilized for, but is not limited to, self-aligned contact etch steps, silicon fin reveal steps, oxide mandrel pull steps, oxide spacer trim, and oxide liner etch.
    Type: Application
    Filed: May 13, 2020
    Publication date: August 27, 2020
    Inventors: Sonam D. Sherpa, Alok Ranjan