Patents by Inventor Alston Ilford Scipio

Alston Ilford Scipio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9828887
    Abstract: A power generation system may include: a first gas turbine system including a first turbine component, a first integral compressor and a first combustor to which air from the first integral compressor and fuel are supplied. The first integral compressor has a flow capacity greater than an intake capacity of the first combustor and/or the first turbine component, creating an excess air flow. A second gas turbine system may include similar components to the first except but without excess capacity in its compressor. A turbo-expander may be operatively coupled to the second gas turbine system. Control valves may control flow of the excess air flow from the first gas turbine system to at least one of the second gas turbine system and the turbo-expander, and flow of a discharge of the turbo-expander to an exhaust of at least one of the first turbine component and the second turbine component.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: November 28, 2017
    Assignee: General Electric Company
    Inventors: Sanji Ekanayake, Dale Joel Davis, Kihyung Kim, Alston Ilford Scipio, Leslie Yung Min Tong
  • Patent number: 9822670
    Abstract: A power generation system may include: a first gas turbine system including a first turbine component, a first integral compressor and a first combustor to which air from the first integral compressor and fuel are supplied. The first integral compressor has a flow capacity greater than an intake capacity of the first combustor and/or the first turbine component, creating an excess air flow. A second gas turbine system may include similar components to the first except but without excess capacity in its compressor. A turbo-expander may be operatively coupled to the second gas turbine system. Control valves may control flow of the excess air flow from the first gas turbine system to at least one of the second gas turbine system and the turbo-expander, and flow of a discharge of the turbo-expander to an inlet of at least one of the first integral compressor and the second compressor.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: November 21, 2017
    Assignee: General Electric Company
    Inventors: Sanji Ekanayake, Thomas John Freeman, Kihyung Kim, Alston Ilford Scipio, Leslie Yung Min Tong
  • Patent number: 9816391
    Abstract: The present application thus provides a cleaning system for use with a compressor of a turbine engine. The cleaning system may include a wash nozzle positioned about the compressor and a spheroid injection port to inject a number of spheroids therein.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: November 14, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Sanji Ekanayake, Alston Ilford Scipio, Julio Enrique Mestroni, Timothy Joseph Rehg
  • Patent number: 9797310
    Abstract: A turbomachine includes a compressor having an inter-stage gap between adjacent rows of rotor blades and stator vanes. A combustor is connected to the compressor, and a turbine is connected to the combustor. An intercooler is operatively connected to the compressor, and includes a first plurality of heat pipes that extend into the inter-stage gap. The first plurality of heat pipes are operatively connected to a first manifold, and the heat pipes and the first manifold are configured to transfer heat from the compressed airflow from the compressor to heat exchangers. A cooling system is operatively connected to the turbine, and includes a second plurality of heat pipes located in the turbine nozzles. The second plurality of heat pipes are operatively connected to a second manifold, and the heat pipes and the second manifold are configured to transfer heat from the turbine nozzles to the heat exchangers.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: October 24, 2017
    Assignee: General Electric Company
    Inventors: Sanji Ekanayake, Joseph Paul Rizzo, Alston Ilford Scipio, Timothy Tahteh Yang, Thomas Edward Wickert
  • Patent number: 9759131
    Abstract: Methods and systems for imparting corrosion resistance to gas turbine engines are disclosed. Existing and/or supplemental piping is connected to existing compressor section air extraction piping and turbine section cooling air piping to supply water and anti-corrosion agents into areas of the gas turbine engine not ordinarily and/or directly accessible by injection of cleaning agents into the bellmouth of the turbine alone and/or repair methods. An anti-corrosion mixture is selectively supplied as an aqueous solution to the compressor and/or the turbine sections of the gas turbine engine to coat the gas turbine engine components therein with a metal passivation coating which mitigates corrosion in the gas turbine engine.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: September 12, 2017
    Assignee: General Electric Company
    Inventors: Alston Ilford Scipio, Dale Joel Davis, Sanji Ekanayake, Paul Robert Fernandez
  • Patent number: 9739168
    Abstract: The present application and the resultant patent provide a wash system for a gas turbine engine. The wash system may include a water source containing a volume of water therein, and a surface filming agent source containing a volume of a surface filming agent therein. The wash system also may include a mixing chamber in fluid communication with the water source and the surface filming agent source, wherein the mixing chamber is configured to mix the water and the surface filming agent therein to produce a film-forming mixture. The wash system further may include an aerosolizing device in fluid communication with the mixing chamber and configured to form an aerosol spray of the film-forming mixture and a propellant. The wash system still further may include a number of supply lines in fluid communication with the aerosolizing device and configured to direct the aerosol spray into the gas turbine engine.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: August 22, 2017
    Assignee: General Electric Company
    Inventors: Sanji Ekanayake, Alston Ilford Scipio
  • Publication number: 20170218852
    Abstract: An inlet bleed heat system for use with a turbine assembly includes a first discharge line coupled in flow communication between a compressor and an intake manifold assembly. A first control valve that is coupled to the first discharge line and operable to control a first discharge flow through the first discharge line from the compressor to the intake manifold assembly during a first operational mode. A second discharge line that is coupled in flow communication between the compressor and the intake manifold assembly and a second control valve that is coupled to the second discharge line and operable to control a second discharge flow through the second discharge line from the compressor to the intake manifold assembly during a second operational mode.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 3, 2017
    Inventors: Joseph Philip Klosinski, Alston Ilford Scipio, Alex Clinton Solomon, Sanji Ekanayake, Hannah Louise Dombek
  • Publication number: 20170191423
    Abstract: The present application provides a gas turbine engine for combusting a flow of hydrocarbon based liquid fuel with vanadium contaminants therein. The gas turbine engine may include a combustor for combusting the flow of hydrocarbon based liquid fuel, an upstream magnesium mixing system for mixing a flow of magnesium with the flow of hydrocarbon based liquid fuel, a turbine, an air extraction system in communication with the turbine, and a downstream magnesium mixing system for providing the flow of magnesium to the air extraction system.
    Type: Application
    Filed: December 31, 2015
    Publication date: July 6, 2017
    Inventors: ALSTON ILFORD SCIPIO, DAVID TRAYHAN, SANJI EKANAYAKE
  • Publication number: 20170191426
    Abstract: A gas turbine system includes a compressor protection subsystem; a hibernation mode subsystem; and a control subsystem that controls the compressor subsystem and the hibernation subsystem. At partial loads on the turbine system, the compressor protection subsystem maintains an air flow through a compressor at an airflow coefficient for the partial load above a minimum flow rate coefficient where aeromechanical stresses occur in the compressor. The air fuel ratio in a combustor is maintained where exhaust gas emission components from the turbine are maintained below a predetermined component emission level while operating at partial loads.
    Type: Application
    Filed: February 22, 2016
    Publication date: July 6, 2017
    Inventors: Alston Ilford Scipio, Michael Anthony Cocca, Thomas John Freeman, Michael Wesley Yarnold, Ryan Eric Obenhoff, Sanji Ekanayake, Douglas Corbin Warwick, Joseph Philip Klosinski
  • Patent number: 9683910
    Abstract: Various embodiments include a leak detection system for a turbine compartment. In some embodiments, the leak detection system includes: a tracer fluid system fluidly connected with the turbine compartment, the tracer fluid system configured to provide an optically detectable fluid to a fluid supply of the turbine compartment; an optical detection system operably connected to the turbine compartment, the optical detection system configured to detect the presence of the optically detectable fluid in at least one location of the turbine compartment; and a control system operably connected to the tracer fluid system and the optical detection system, the control system configured to obtain data about the presence of the optically detectable fluid in the at least one location, and provide an indicator indicating a potential leak location based upon the data about the presence of the optically detectable fluid in the at least one location.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: June 20, 2017
    Assignee: General Electric Company
    Inventors: Sanji Ekanayake, Alston Ilford Scipio
  • Publication number: 20170167378
    Abstract: A power plant includes a compressor, a combustor downstream from the compressor and a turbine disposed downstream from the combustor. The compressor includes a compressor extraction port. The turbine includes a turbine extraction port that is in fluid communication with a hot gas path of the turbine and which provides a flow path for a stream of combustion gas to flow out of the turbine. An exhaust duct is disposed downstream from the turbine and receives exhaust gas from the turbine. An ejector coupled to the turbine extraction port and to the compressor extraction port cools the stream of combustion gas upstream from the exhaust duct. The cooled combustion gas flows into the exhaust duct at a higher temperature than the exhaust gas and mixes with the exhaust gas within the exhaust duct to provide a heated exhaust gas mixture to a heat exchanger downstream from the exhaust duct.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 15, 2017
    Inventors: Joseph Philip Klosinski, Michael Anthony Cocca, Alston Ilford Scipio, Sanji Ekanayake
  • Publication number: 20170167305
    Abstract: A power plant includes an exhaust duct downstream from an outlet of a turbine which receives exhaust gas from the turbine outlet, a first ejector having a primary inlet that is fluidly coupled to a turbine extraction port and an outlet that is in fluid communication with the exhaust duct. The power plant further includes a second ejector having a primary inlet fluidly coupled to the compressor extraction port, a suction inlet in fluid communication with an air supply and an outlet in fluid communication with a suction inlet of the first ejector. The first ejector cools the stream of combustion gas via compressed air extracted from the compressor and cooled via the second ejector. The cooled combustion gas mixes with the exhaust gas within the exhaust duct to provide a heated exhaust gas mixture downstream from the exhaust duct.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 15, 2017
    Inventors: Alston Ilford Scipio, Sanji Ekanayake, Douglas Corbin Warwick, Joseph Philip Klosinski
  • Publication number: 20170167375
    Abstract: A power plant includes a gas turbine having a combustor downstream from a compressor, a turbine disposed downstream from the combustor and an exhaust duct downstream from an outlet of the turbine. The combustor includes an extraction port that is in fluid communication with a hot gas path of the combustor. The extraction port defines a flow path for a stream of combustion gas to flow out of the hot gas path. The exhaust duct receives exhaust gas from the turbine outlet. A coolant injection system injects a coolant into the stream of combustion gas upstream from the exhaust duct such that the stream of combustion gas blends with the exhaust gas from the turbine within the exhaust duct and forms an exhaust gas mixture within the exhaust duct. A heat exchanger is disposed downstream from the exhaust duct and receives the exhaust gas mixture from the exhaust duct.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 15, 2017
    Inventors: Joseph Philip Klosinski, Alston Ilford Scipio, Sanji Ekanayake
  • Publication number: 20170167377
    Abstract: A power plant includes a turbine disposed downstream from a combustor. The turbine includes an extraction port that is in fluid communication with a hot gas path of the turbine and which provides a flow path for a stream of combustion gas to flow out of the turbine. An exhaust duct is disposed downstream from the turbine and receives exhaust gas from the turbine. An ejector coupled to the extraction port and to an air supply cools the stream of combustion gas upstream from the exhaust duct. The cooled combustion gas flows into the exhaust duct at a higher temperature than the exhaust gas. The cooled combustion gas mixes with the exhaust gas within the exhaust duct to provide a heated exhaust gas mixture to a heat exchanger disposed downstream from the exhaust duct. The heat exchanger may extract thermal energy from the exhaust gas mixture to produce steam.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 15, 2017
    Inventors: Joseph Philip Klosinski, Alston Ilford Scipio, Sanji Ekanayake, George Vargese Mathai
  • Publication number: 20170167374
    Abstract: A power plant includes a first gas turbine and a second gas turbine. The first gas turbine includes a turbine extraction port that is in fluid communication with a hot gas path of the turbine and an exhaust duct that receives exhaust gas from the turbine outlet. The power plant further includes a first gas cooler having a primary inlet fluidly coupled to the turbine extraction port, a secondary inlet fluidly coupled to a coolant supply system and an outlet in fluid communication with the exhaust duct. The first gas cooler provides a cooled combustion gas to the exhaust duct which mixes with the exhaust gas to provide an exhaust gas mixture to a first heat exchanger downstream from the exhaust duct. The first gas cooler is also in fluid communication with a combustor of the second gas turbine.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 15, 2017
    Inventors: Joseph Philip Klosinski, Alston Ilford Scipio, Sanji Ekanayake, Paul Robert Fernandez
  • Publication number: 20170167306
    Abstract: A power plant includes a gas turbine including a turbine extraction port that is in fluid communication with a hot gas path of the turbine and an exhaust duct that receives exhaust gas from the turbine outlet. The power plant further includes a first gas cooler having a primary inlet fluidly coupled to the turbine extraction port, a secondary inlet fluidly coupled to a coolant supply system and an outlet in fluid communication with the exhaust duct. The power plant further includes a gas distribution manifold that is disposed downstream from the outlet of the first gas cooler and which receives a portion of the combustion gas or a portion of the cooled combustion gas and distributes the portion of the combustion gas or a portion of the cooled combustion to one or more secondary operations of the power plant.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 15, 2017
    Inventors: Alston Ilford Scipio, Sanji Ekanayake, Joseph Philip Klosinski
  • Publication number: 20170167304
    Abstract: A power plant includes an exhaust duct that receives an exhaust gas from an outlet of the turbine outlet and an ejector having a primary inlet fluidly coupled to a compressor extraction port. The ejector receives a stream of compressed air from the compressor via the compressor extraction port. The power plant further includes a static mixer having a primary inlet fluidly coupled to a turbine extraction port, a secondary inlet fluidly coupled to an outlet of the ejector and an outlet that is in fluid communication with the exhaust duct. A stream of combustion gas flows from a hot gas path of the turbine and into the inlet of the static mixer via the turbine extraction port. The static mixer receives a stream of cooled compressed air from the ejector to cool the stream of combustion gas upstream from the exhaust duct. The cooled combustion gas mixes with the exhaust gas within the exhaust duct to provide a heated exhaust gas mixture to a heat exchanger.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 15, 2017
    Inventors: Alston Ilford Scipio, Sanji Ekanayake, Joseph Philip Klosinski, George Vargese Mathai
  • Publication number: 20170167300
    Abstract: A system for controlling gas turbine output for a gas turbine power plant is disclosed herein. The power plant includes a gas turbine including a combustor downstream from a compressor, a turbine downstream from the combustor and an exhaust duct downstream from the outlet of the turbine. The exhaust duct receives exhaust gas from the turbine outlet. The system further includes an exhaust damper operably connected to a downstream end of the exhaust duct. The exhaust damper increases backpressure at the turbine outlet and restricts axial exit velocity of the exhaust gas exiting the turbine outlet when the exhaust damper is partially closed. A method for controlling gas turbine output is also provided herein.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 15, 2017
    Inventors: George Vargese Mathai, Alston Ilford Scipio, Harold Lamar Jordan, JR., Sanji Ekanayake, Joseph Philip Klosinski
  • Publication number: 20170167376
    Abstract: A power plant includes a turbine having a plurality of turbine stages and an extraction port in fluid communication with one or more of the turbine stages. The extraction port provides a flow path for a stream of combustion gas to flow out of the turbine. An exhaust duct is disposed downstream from the turbine and receives exhaust gas from the turbine. The exhaust duct is fluid communication with the extraction port. A coolant injection system injects a coolant into the stream of combustion gas to provide cooled combustion gas to the exhaust duct. The cooled combustion gas flows into the exhaust duct at a temperature that is higher than a temperature of the exhaust gas, thereby increasing the temperature of the exhaust gas within the exhaust duct. The increase in thermal energy may be used to produce steam downstream from the exhaust duct.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 15, 2017
    Inventors: Joseph Philip Klosinski, Michael Anthony Cocca, Alston Ilford Scipio, Sanji Ekanayake, Jason Brian Shaffer
  • Publication number: 20170167496
    Abstract: The present application provides an inlet bleed heat control system for a compressor of a gas turbine engine. The inlet bleed heat control system provides an inlet bleed heat manifold and an ejector in communication with the inlet bleed heat manifold such that the ejector is in communication with a flow of compressor discharge air and a flow of ambient air.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 15, 2017
    Inventors: JOSEPH PHILIP KLOSINSKI, SANJI EKANAYAKE, JOHN CLISBY BLANTON, ALSTON ILFORD SCIPIO