Patents by Inventor Amaury BADON

Amaury BADON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11408723
    Abstract: The present invention relates to a method for the non-invasive optical characterization of a heterogeneous medium, comprising: a step of illuminating, by means of a series of incident light waves, a given field of view of the heterogeneous medium, positioned in a focal plane of a microscope objective (30); a step of determining a first distortion matrix (Dur, Drr) in an observation basis defined between a conjugate plane of the focal plane (FP) and an observation plane, said first distortion matrix corresponding, in a correction basis defined between a conjugate plane of the focal plane and an aberration correction plane, to the term-by-term matrix product of a first reflection matrix (Rur) of the field of view, determined in the correction basis, with the phase conjugate matrix of a reference reflection matrix, defined for a model medium, in said correction basis; and a step of determining, from the first distortion matrix, at least one mapping of a physical parameter of the heterogeneous medium.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: August 9, 2022
    Assignees: Centre National de la Recherche Scientifique, ECOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES DE LA VILLE DE PARIS
    Inventors: Alexandre Aubry, Amaury Badon, Victor Barolle, Claude Boccara, Laura Cobus, Mathias Fink, William Lambert
  • Patent number: 11346819
    Abstract: In a first aspect, the present description relates to a system for non-invasively characterizing a heterogeneous medium using ultrasound, comprising at least one first array (10) of transducers configured to generate a series of incident ultrasound waves in a region of said heterogeneous medium and record the ultrasound waves which are backscattered by said region as a function of time, as well as a computing unit (42) which is coupled to said at least one first array of transducers and configured to: record an experimental reflection matrix defined between an emission basis at the input and the basis of the transducers at the output; determine, from said experimental reflection matrix, at least one first wideband reflection matrix defined in a focused base at the input and output; determine a first distortion matrix defined between said focused basis and an observation basis, said first distortion matrix resulting, directly or after a change of basis, from the term-by-term matrix product of said first wideba
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: May 31, 2022
    Assignees: Centre National de la Recherche Scientifique, ECOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES DE LA VILLE DE PARIS
    Inventors: Alexandre Aubry, Amaury Badon, Victor Barolle, Claude Boccara, Laura Cobus, Mathias Fink, William Lambert
  • Publication number: 20220003721
    Abstract: In a first aspect, the present description relates to a system for non-invasively characterizing a heterogeneous medium using ultrasound, comprising at least one first array (10) of transducers configured to generate a series of incident ultrasound waves in a region of said heterogeneous medium and record the ultrasound waves which are backscattered by said region as a function of time, as well as a computing unit (42) which is coupled to said at least one first array of transducers and configured to: record an experimental reflection matrix defined between an emission basis at the input and the basis of the transducers at the output; determine, from said experimental reflection matrix, at least one first wideband reflection matrix defined in a focused base at the input and output; determine a first distortion matrix defined between said focused basis and an observation basis, said first distortion matrix resulting, directly or after a change of basis, from the term-by-term matrix product of said first wideba
    Type: Application
    Filed: July 16, 2019
    Publication date: January 6, 2022
    Applicants: Centre National de la Recherche Scientifique, ECOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES DE LA VILLE DE PARIS
    Inventors: Alexandre Aubry, Amaury Badon, Victor Barolle, Claude Boccara, Laura Cobus, Mathias Fink, William Lambert
  • Publication number: 20210310787
    Abstract: The present invention relates to a method for the non-invasive optical characterization of a heterogeneous medium, comprising: a step of illuminating, by means of a series of incident light waves, a given field of view of the heterogeneous medium, positioned in a focal plane of a microscope objective (30); a step of determining a first distortion matrix (Dur, Drr) in an observation basis defined between a conjugate plane of the focal plane (FP) and an observation plane, said first distortion matrix corresponding, in a correction basis defined between a conjugate plane of the focal plane and an aberration correction plane, to the term-by-term matrix product of a first reflection matrix (Rur) of the field of view, determined in the correction basis, with the phase conjugate matrix of a reference reflection matrix, defined for a model medium, in said correction basis; and a step of determining, from the first distortion matrix, at least one mapping of a physical parameter of the heterogeneous medium.
    Type: Application
    Filed: July 16, 2019
    Publication date: October 7, 2021
    Applicants: Centre National de la Recherche Scientifique, ECOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES DE LA VILLE DE PARIS
    Inventors: Alexandre Aubry, Amaury Badon, Victor Barolle, Claude Boccara, Laura Cobus, Mathias Fink, William Lambert
  • Patent number: 11042016
    Abstract: A Multi-Z confocal microscopy system can simultaneously record from multiple Z-sections, and thus performs high speed volumetric imaging. An illumination line can be formed by under-filling the illumination beam in the aperture of the microscope objective. The illumination line extends in the Z dimension into the target sample to be imaged and an X-Y scanning mechanism can be used to scan the illumination line over the sample. The detection signal emanating from the scanned sample can be collected through the full numerical aperture of the microscope objective and directed to a detector subsystem. The detector subsystem includes an array of reflecting pinhole detectors and each reflecting pinhole detector is configured to image a volume at a different depth in the sample. This configuration enables reflecting pinhole detector array to image more than one depth volume at the same time.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: June 22, 2021
    Assignee: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Jerome Mertz, Amaury Badon, Timothy Weber, Sheng Xiao, Jean-Marc Tsang Min Ching
  • Publication number: 20190179127
    Abstract: A Multi-Z confocal microscopy system can simultaneously record from multiple Z-sections, and thus performs high speed volumetric imaging. An illumination line can be formed by under-filling the illumination beam in the aperture of the microscope objective. The illumination line extends in the Z dimension into the target sample to be imaged and an X-Y scanning mechanism can be used to scan the illumination line over the sample. The detection signal emanating from the scanned sample can be collected through the full numerical aperture of the microscope objective and directed to a detector subsystem. The detector subsystem includes an array of reflecting pinhole detectors and each reflecting pinhole detector is configured to image a volume at a different depth in the sample. This configuration enables reflecting pinhole detector array to image more than one depth volume at the same time.
    Type: Application
    Filed: December 12, 2018
    Publication date: June 13, 2019
    Applicant: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Jerome MERTZ, Amaury BADON, Timothy WEBER, Sheng XIAO, Jean-Marc TSANG MIN CHING