Patents by Inventor Ambarish KULKARNI

Ambarish KULKARNI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11946146
    Abstract: A coating system configured to be applied to a thermal barrier coating of an article includes an infiltration coating configured to be applied to the thermal barrier coating. The infiltration coating infiltrates at least some pores of the thermal barrier coating. The infiltration coating decomposes within the at least some pores of the thermal barrier coating to coat a portion of the at least some pores of the thermal barrier coating. The infiltration coating reduces a porosity of the thermal barrier coating. The coating system also includes a reactive phase spray formulation coat configured to be applied to the thermal barrier coating. The reactive phase spray formulation coating reacts with dust deposits on the thermal barrier coating.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: April 2, 2024
    Assignee: General Electric Company
    Inventors: Hrishikesh Keshavan, Bernard Patrick Bewlay, Jose Sanchez, Margeaux Wallace, Byron Pritchard, Ambarish Kulkarni
  • Publication number: 20220136095
    Abstract: A reactive phase spray formulation coating is configured to be disposed on the thermal barrier coating of an article. The reactive phase spray formulation coating comprises a base material and a binder material. The base material has a compliance that is higher than a compliance of the binder material, the binder material has a cohesive strength that is greater than a cohesive strength of the base material, the binder material has an adhesive strength that is greater than an adhesive strength of the base material, and the binder material has a surface area of at least ten square-meters per gram that is greater than a surface area of the base material. The binder material is configured to improve a cohesive strength level, an adhesive strength level, and a compliance of the formulation coating of the thermal barrier coating relative to the formulation coating not including the binder material.
    Type: Application
    Filed: January 13, 2022
    Publication date: May 5, 2022
    Inventors: Hrishikesh Keshavan, Byron Pritchard, Margeaux Wallace, Ambarish Kulkarni, Mehmet Dede, Bernard Patrick Bewlay
  • Publication number: 20210277523
    Abstract: A coating system configured to be applied to a thermal barrier coating of an article includes an infiltration coating configured to be applied to the thermal barrier coating. The infiltration coating infiltrates at least some pores of the thermal barrier coating. The infiltration coating decomposes within the at least some pores of the thermal barrier coating to coat a portion of the at least some pores of the thermal barrier coating. The infiltration coating reduces a porosity of the thermal barrier coating. The coating system also includes a reactive phase spray formulation coat configured to be applied to the thermal barrier coating.
    Type: Application
    Filed: May 25, 2021
    Publication date: September 9, 2021
    Inventors: Hrishikesh Keshavan, Bernard Patrick Bewlay, Jose Sanchez, Margeaux Wallace, Byron Pritchard, Ambarish Kulkarni
  • Patent number: 11028486
    Abstract: A method includes applying an infiltration coating on a thermal barrier coating of an article. The infiltration coating infiltrates at least some pores of the thermal barrier coating. The infiltration coating decomposes within the at least some pores of the thermal barrier coating to coat a portion of the at least some pores of the thermal barrier coating. The infiltration coating reduces a porosity of the thermal barrier coating. The method also includes applying a reactive phase spray formulation coating on the thermal barrier coating. The reactive phase spray formulation coating reacts with dust deposits on the thermal barrier coating.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: June 8, 2021
    Assignee: General Electric Company
    Inventors: Hrishikesh Keshavan, Bernard Patrick Bewlay, Jose Sanchez, Margeaux Wallace, Byron Pritchard, Ambarish Kulkarni
  • Patent number: 10994287
    Abstract: An atomizing spray device includes a housing having inlets that receive a first fluid and a slurry of ceramic particles and a second fluid. The inlets are fluidly coupled with outlets by an interior chamber that mixes the first fluid with the slurry to form a primary mixture of the first fluid and first atomized droplets of the slurry. A first outlet on a first side of the housing and a second outlet on the first side of the housing are shaped to change the primary mixture to form a secondary mixture of the first fluid and second atomized droplets of the slurry. The first outlet sprays the secondary mixture onto a first surface as a first layer of coating and the second outlet sprays the secondary mixture onto the first surface as a second layer of coating while the housing moves in a direction along the first surface.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: May 4, 2021
    Assignee: General Electric Company
    Inventors: Ambarish Kulkarni, Byron Pritchard, Hrishikesh Keshavan, Mehmet Dede, Bernard Patrick Bewlay
  • Patent number: 10875054
    Abstract: Systems and methods that provide or restore a coating to a component are provided. The systems and methods utilized an atomizing spray device. A gas and a slurry that comprises fluid and ceramic particles are supplied to the atomizing spray device. The slurry and gas are discharged from the spray device to form two-phase droplets. The fluid within the droplets evaporates to prevent the fluid from becoming part of the coating as the droplets traverse through the air and prior to impacting the surface of the component.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: December 29, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ambarish Kulkarni, Byron Pritchard, Shankar Sivaramakrishnan, Krzysztof Lesnicki, Hrishikesh Keshavan, Bernard Patrick Bewlay, Mehmet Dede, Larry Rosenzweig, Jay Morgan
  • Patent number: 10792679
    Abstract: A coating system includes a support fixture sized to be partially inserted into one or more openings of a component and a spray nozzle segment device comprising a housing configured to receive a slurry. The device is disposed radially outward of a central axis of the component and is shaped to extend circumferentially about at least part of the central axis of the component. The housing comprises plural delivery nozzles configured to spray the slurry onto a surface of the component. The device is operably coupled with the support fixture such that the fixture maintains a position of the device within the component when the support fixture is partially inserted into one or more openings of the component.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: October 6, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ambarish Kulkarni, Byron Pritchard, Hrishikesh Keshavan, Mehmet Dede, Bernard Patrick Bewlay
  • Publication number: 20200173033
    Abstract: A method includes applying an infiltration coating on a thermal barrier coating of an article. The infiltration coating infiltrates at least some pores of the thermal barrier coating. The infiltration coating decomposes within the at least some pores of the thermal barrier coating to coat a portion of the at least some pores of the thermal barrier coating. The infiltration coating reduces a porosity of the thermal barrier coating. The method also includes applying a reactive phase spray formulation coating on the thermal barrier coating. The reactive phase spray formulation coating reacts with dust deposits on the thermal barrier coating.
    Type: Application
    Filed: December 4, 2018
    Publication date: June 4, 2020
    Inventors: Hrishikesh Keshavan, Bernard Patrick Bewlay, Jose Sanchez, Margeaux Wallace, Byron Pritchard, Ambarish Kulkarni
  • Publication number: 20190316246
    Abstract: A reactive phase spray formulation coating is configured to be disposed on the thermal barrier coating of an article. The reactive phase spray formulation coating comprises a base material and a binder material. The base material has a compliance that is higher than a compliance of the binder material, the binder material has a cohesive strength that is greater than a cohesive strength of the base material, the binder material has an adhesive strength that is greater than an adhesive strength of the base material, and the binder material has a surface area of at least ten square-meters per gram that is greater than a surface area of the base material. The binder material is configured to improve a cohesive strength level, an adhesive strength level, and a compliance of the formulation coating of the thermal barrier coating relative to the formulation coating not including the binder material.
    Type: Application
    Filed: April 17, 2018
    Publication date: October 17, 2019
    Inventors: Hrishikesh Keshavan, Byron Pritchard, Margeaux Wallace, Ambarish Kulkarni, Mehmet Dede, Bernard Patrick Bewlay
  • Publication number: 20190314831
    Abstract: A coating system includes a support fixture sized to be partially inserted into one or more openings of a component and a spray nozzle segment device comprising a housing configured to receive a slurry. The device is disposed radially outward of a central axis of the component and is shaped to extend circumferentially about at least part of the central axis of the component. The housing comprises plural delivery nozzles configured to spray the slurry onto a surface of the component. The device is operably coupled with the support fixture such that the fixture maintains a position of the device within the component when the support fixture is partially inserted into one or more openings of the component.
    Type: Application
    Filed: April 17, 2018
    Publication date: October 17, 2019
    Inventors: Ambarish Kulkarni, Byron Pritchard, Hrishikesh Keshavan, Mehmet Dede, Bernard Patrick Bewlay
  • Patent number: 10384808
    Abstract: A control system having one or more controllers configured to determine a maintenance date of an engine based on monitored parameters of the engine of an aircraft. The one or more controllers also are configured to, determine an amount of coating sprayed on the engine on the determined maintenance date based on the monitored parameters and determined maintenance date. The one or more controllers also are configured to adjust the maintenance date based on needs of an aircraft fleet and regularly scheduled maintenance of the engine.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: August 20, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Bernard Patrick Bewlay, Byron Pritchard, Shankar Sivaramakrishnan, Ambarish Kulkarni, Hrishikesh Keshavan, Mehmet Dede, Larry Rosenzweig
  • Publication number: 20190184423
    Abstract: Systems and methods that provide or restore a coating to a component are provided. The systems and methods utilized an atomizing spray device. A gas and a slurry that comprises fluid and ceramic particles are supplied to the atomizing spray device. The slurry and gas are discharged from the spray device to form two-phase droplets. The fluid within the droplets evaporates to prevent the fluid from becoming part of the coating as the droplets traverse through the air and prior to impacting the surface of the component.
    Type: Application
    Filed: February 20, 2019
    Publication date: June 20, 2019
    Inventors: Ambarish Kulkarni, Byron Pritchard, Shankar Sivaramakrishnan, Krzysztof Lesnicki, Hrishikesh Keshavan, Bernard Patrick Bewlay, Mehmet Dede, Larry Rosenzweig, Jay Morgan
  • Patent number: 10265725
    Abstract: Systems and methods that provide or restore a coating to a component are provided. The systems and methods utilized an atomizing spray device. A slurry that comprises a fluid and ceramic particles, and a gas are supplied to the atomizing spray device. The slurry and gas are discharged from the spray device to form two-phase droplets. The fluid within the droplets evaporates to prevent the fluid from becoming part of the coating as the droplets traverse through the air and prior to impacting the surface of the component.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: April 23, 2019
    Assignee: General Electric Company
    Inventors: Ambarish Kulkarni, Byron Pritchard, Shankar Sivaramakrishnan, Krzysztof Lesnicki, Hrishikesh Keshavan, Bernard Patrick Bewlay, Mehmet Dede, Larry Rosenzweig, Jay Morgan
  • Publication number: 20180250688
    Abstract: An atomizing spray device includes a housing having inlets that receive a first fluid and a slurry of ceramic particles and a second fluid. The inlets are fluidly coupled with outlets by an interior chamber that mixes the first fluid with the slurry to form a primary mixture of the first fluid and first atomized droplets of the slurry. A first outlet on a first side of the housing and a second outlet on the first side of the housing are shaped to change the primary mixture to form a secondary mixture of the first fluid and second atomized droplets of the slurry. The first outlet sprays the secondary mixture onto a first surface as a first layer of coating and the second outlet sprays the secondary mixture onto the first surface as a second layer of coating while the housing moves in a direction along the first surface.
    Type: Application
    Filed: April 30, 2018
    Publication date: September 6, 2018
    Inventors: Ambarish Kulkarni, Byron Pritchard, Hrishikesh Keshavan, Mehmet Dede, Bernard Patrick Bewlay
  • Publication number: 20180154383
    Abstract: Systems and methods that provide or restore a coating to a component are provided. The systems and methods utilized an atomizing spray device. A slurry that comprises a fluid and ceramic particles, and a gas are supplied to the atomizing spray device. The slurry and gas are discharged from the spray device to form two-phase droplets. The fluid within the droplets evaporates to prevent the fluid from becoming part of the coating as the droplets traverse through the air and prior to impacting the surface of the component.
    Type: Application
    Filed: December 2, 2016
    Publication date: June 7, 2018
    Inventors: Ambarish Kulkarni, Byron Pritchard, Shankar Sivaramakrishnan, Krzysztof Lesnicki, Hrishikesh Keshavan, Bernard Patrick Bewlay, Mehmet Dede, Larry Rosenzweig, Jay Morgan
  • Publication number: 20140272164
    Abstract: The present application provides for coaters, and methods of using coaters, configured to coat tubes, rods or like members. The coaters may include a coating reservoir configured to apply a coating to the exterior surface of such members. The coating reservoir may include at least one void, first and second ends with first and second apertures, respectively, in communication with the at least one void, at least one port in communication with the at least one void, and coating delivery material positioned within the at least one void. The first aperture, second aperture, and coating delivery material may define a coating passageway through the coating reservoir. An engagement portion of the coating delivery material may define the narrowest portion of the coating pathway and be effective in supporting and coating the exterior surface of a member as the member passes, or is passed, through the coating passageway.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kevin MCEVOY, Sean Michael SWEENEY, Ambarish KULKARNI