Patents by Inventor Amelia Corinne PETERSON

Amelia Corinne PETERSON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961729
    Abstract: A cleaning device for cleaning electrodes of an ion optical multipole device comprises at least one substantially longitudinal cleaning section, at least one handling section extending axially from the at least one cleaning section and at least one direction section extending axially from the at least one cleaning section. The at least one cleaning section has a larger cross section than the at least one handling section. The at least one direction section is capable of allowing a longitudinal movement of the cleaning device in a first axial direction and resisting a longitudinal movement of the cleaning device in a second, opposite axial direction.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: April 16, 2024
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Jan-Peter Hauschild, Amelia Corinne Peterson, Aivaras Venckus
  • Publication number: 20230154735
    Abstract: Method and system for characterising an isolation profile of a mass spectrometer, the method comprising obtaining data of an, or at least one ion species transmitted by a mass spectrometer forming an isolation profile of the mass spectrometer. Normalizing the obtained data. Providing the normalized data to a deep neural network trained using a plurality of previous isolation profiles. Generating from the deep neural network a set of fit parameters of a curve representing a fit to the normalized data. Providing as an output, data representing the curve. The method may also be used as part of a calibration procedure for the mass spectrometer.
    Type: Application
    Filed: November 14, 2022
    Publication date: May 18, 2023
    Inventors: Adrian Schuetz, Amelia Corinne Peterson, Bastian Reitemeier, Bernd Hagedorn
  • Patent number: 11515138
    Abstract: Trapping ions in an ion trapping assembly is described. In one aspect, this is implemented by introducing ions into the ion trapping assembly, applying a first RF trapping amplitude to the ion trapping assembly so as to trap introduced ions which have m/z ratios within a first range of m/z ratios, and cooling the trapped ions. In some aspects, also performed is reducing the RF trapping amplitude from the first RF trapping amplitude to a second, lower, RF trapping amplitude so as to reduce the low mass cut-off of the ion trapping assembly and trapping, at the second, lower RF trapping amplitude, introduced ions having m/z ratios within a second range of m/z ratios. A lower mass limit of the second range of m/z ratios is below the low mass cut-off of the ion trapping assembly when the first RF trapping amplitude is applied.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: November 29, 2022
    Assignee: THERMO FISHER SCIENTIFIC (BREMEN) GMBH
    Inventors: Dirk Nolting, Alexander A. Makarov, Amelia Corinne Peterson
  • Patent number: 11087969
    Abstract: A method for controlling the filling of an ion trap with a predetermined quantity of ions. The method comprises generating an ion current by transmitting ions along an ion path to an ion trap, such that ions are accumulated in the ion trap over a transmission time period, wherein the magnitude of the ion current varies in time. The method further comprises detecting at an ion detector at least some ions from the source of ions during a plurality of distinct sampling time intervals interspersed within the transmission time period, and setting the duration of the transmission time period based on the detection of ions at the ion detector. The time difference between the start of a sampling time interval and the start of an immediately subsequent sampling time interval is less than a timescale for variation of the magnitude of the ion current. A controller for controlling the filling of an ion trap with a predetermined quantity of ions and a mass spectrometer comprising the controller is also described.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: August 10, 2021
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Amelia Corinne Peterson, Jan-Peter Hauschild, Alexander Kholomeev, Alexander A. Makarov
  • Patent number: 11062895
    Abstract: A method of operating a mass spectrometer, comprising: generating ions from a sample; mass filtering the ions using a quadrupole mass filter having a set of selection parameters to transmit ions within at least one selected range of mass-to-charge ratios narrower than an initial range, wherein the quadrupole comprises four parallel elongate electrodes arranged in opposing pairs to which are applied RF and DC, wherein an attractive DC voltage is applied to one pair of opposing electrodes and a repulsive DC voltage is applied to the other pair; mass analysing or detecting the ions transmitted by the quadrupole mass filter; repeating the steps of generating ions, mass filtering and mass analysing or detecting multiple times; switching a configuration of the pairs of opposing electrodes to which the attractive DC voltage and the repulsive DC voltage are applied multiple times over the course of repeating the steps so that over long term operation the build-up of contamination on each pair of opposing electrodes i
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: July 13, 2021
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Amelia Corinne Peterson, Jan-Peter Hauschild, Oliver Lange, Alexander A. Makarov
  • Publication number: 20200373146
    Abstract: An ion trap 1 comprises one ejection electrode 2 for ion trapping having an opening 4, through which ions in the ion trap 1 can be ejected in an ejection direction E and further electrodes 3 for ion trapping, wherein the ejection electrode 2 and the further electrodes 3 are elongated in a longitudinal direction L. The angle ? between the longitudinal direction L and the ejection direction E is nearly 90°. The ion trap 1 comprises a primary winding 5 connected to an RF power supply 6, a secondary winding 7 coupling with the primary winding 5 for transforming the RF voltage of the RF power supply 6 supplying the transformed RF signals to the ejection electrode 2 and secondary windings 7? coupling with the primary winding 5 for transforming the RF voltage of the RF power supply 6 supplying the transformed RF signals to the further electrodes 3.
    Type: Application
    Filed: May 20, 2020
    Publication date: November 26, 2020
    Inventors: Jan-Peter Hauschild, Alexander A. Makarov, Alexander Kholomeev, Dmitry Grinfeld, Eduard V. Dennisov, Amelia Corinne Peterson
  • Publication number: 20200373137
    Abstract: A cleaning device for cleaning electrodes of an ion optical multipole device comprises at least one substantially longitudinal cleaning section, at least one handling section extending axially from the at least one cleaning section and at least one direction section extending axially from the at least one cleaning section. The at least one cleaning section has a larger cross section than the at least one handling section.
    Type: Application
    Filed: May 15, 2020
    Publication date: November 26, 2020
    Inventors: Jan-Peter Hauschild, Amelia Corinne Peterson, Aivaras Venckus
  • Publication number: 20200357627
    Abstract: A method for controlling the filling of an ion trap with a predetermined quantity of ions. The method comprises generating an ion current by transmitting ions along an ion path to an ion trap, such that ions are accumulated in the ion trap over a transmission time period, wherein the magnitude of the ion current varies in time. The method further comprises detecting at an ion detector at least some ions from the source of ions during a plurality of distinct sampling time intervals interspersed within the transmission time period, and setting the duration of the transmission time period based on the detection of ions at the ion detector. The time difference between the start of a sampling time interval and the start of an immediately subsequent sampling time interval is less than a timescale for variation of the magnitude of the ion current. A controller for controlling the filling of an ion trap with a predetermined quantity of ions and a mass spectrometer comprising the controller is also described.
    Type: Application
    Filed: May 1, 2020
    Publication date: November 12, 2020
    Inventors: Amelia Corinne Peterson, Jan-Peter Hauschild, Alexander Kholomeev, Alexander A. Makarov
  • Patent number: 10811243
    Abstract: Disclosed herein is an ion supply system, having an ion source emitting ions into a fore vacuum chamber, an ion transport device having stacked electrodes arranged in the fore vacuum chamber, a control system supplying an oscillatory voltage to the electrodes of the ion transport device and a vacuum chamber, arranged downstream from the ion transport device. A vacuum gauge is arranged in the vacuum chamber. The pressure signal of the vacuum gauge is supplied to the control system supplying the oscillatory voltage to electrodes of the ion transport device. The control system adjusts the amplitude of the oscillatory voltage in accordance with the pressure signal.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: October 20, 2020
    Assignee: Thermo Fisher Scientific (Bremen) GMBH
    Inventors: Amelia Corinne Peterson, Denis Chernyshev, Jan-Peter Hauschild, Erik Couzijn
  • Publication number: 20200328073
    Abstract: A method of operating a mass spectrometer, comprising: generating ions from a sample; mass filtering the ions using a quadrupole mass filter having a set of selection parameters to transmit ions within at least one selected range of mass-to-charge ratios narrower than an initial range, wherein the quadrupole comprises four parallel elongate electrodes arranged in opposing pairs to which are applied RF and DC, wherein an attractive DC voltage is applied to one pair of opposing electrodes and a repulsive DC voltage is applied to the other pair; mass analysing or detecting the ions transmitted by the quadrupole mass filter; repeating the steps of generating ions, mass filtering and mass analysing or detecting multiple times; switching a configuration of the pairs of opposing electrodes to which the attractive DC voltage and the repulsive DC voltage are applied multiple times over the course of repeating the steps so that over long term operation the build-up of contamination on each pair of opposing electrodes i
    Type: Application
    Filed: April 8, 2020
    Publication date: October 15, 2020
    Inventors: Amelia Corinne Peterson, Jan-Peter Hauschild, Oliver Lange, Alexander A. Makarov
  • Publication number: 20190198308
    Abstract: Disclosed herein is an ion supply system, having an ion source emitting ions into a fore vacuum chamber, an ion transport device having stacked electrodes arranged in the fore vacuum chamber, a control system supplying an oscillatory voltage to the electrodes of the ion transport device and a vacuum chamber, arranged downstream from the ion transport device. A vacuum gauge is arranged in the vacuum chamber. The pressure signal of the vacuum gauge is supplied to the control system supplying the oscillatory voltage to electrodes of the ion transport device. The control system adjusts the amplitude of the oscillatory voltage in accordance with the pressure signal.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 27, 2019
    Inventors: Amelia Corinne PETERSON, Denis CHERNYSHEV, Jan-Peter HAUSCHILD, Erik COUZIJN