Patents by Inventor Amit Goyal

Amit Goyal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8257566
    Abstract: A nanotube device and a method of depositing nanotubes for device fabrication are disclosed. The method relates to electrophoretic deposition of nanotubes, and allows a control of the number of deposited nanotubes and positioning within a defined region.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: September 4, 2012
    Assignee: New Jersey Institute of Technology
    Inventors: Reginald C. Farrow, Zafar Iqbal, Amit Goyal, Sheng Liu
  • Publication number: 20120213964
    Abstract: A polycrystalline ferroelectric and/or multiferroic oxide article includes a substrate having a biaxially textured surface; at least one biaxially textured buffer layer supported by the substrate; and a biaxially textured ferroelectric or multiferroic oxide layer supported by the buffer layer. Methods for making polycrystalline ferroelectric and/or multiferroic oxide articles are also disclosed.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 23, 2012
    Applicant: UT-Battelle, LLC
    Inventors: Amit GOYAL, Junsoo Shin
  • Patent number: 8227082
    Abstract: A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: July 24, 2012
    Assignee: UT-Battelle, LLC
    Inventor: Amit Goyal
  • Patent number: 8210420
    Abstract: A method of forming a composite sheet includes the steps of: providing a first sheet having a surface and including a metal or alloy, the first sheet having a given strength characteristic; providing a second sheet having a surface and a strength characteristic that is superior to the given strength characteristic of the first sheet; disposing the first sheet and the second sheet in an aligned opposing position with at least a portion of the surface of the first sheet touching the surface of the first sheet to form a contact area; and bonding the first sheet to the second sheet at least in part by applying an oscillating ultrasonic force to at least one of the first sheet and the second sheet to form a composite sheet, the first sheet having a cube texture characterized by a ?-scan having a FWHM of no more than 15° in all directions.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: July 3, 2012
    Assignee: UT-Battelle, LLC
    Inventors: Craig A. Blue, Amit Goyal
  • Publication number: 20120156124
    Abstract: The present disclosure provides for systems and methods for producing carbon nanotubes. More particularly, the present disclosure provides for improved systems and methods for producing single wall carbon nanotubes (SWNTs) by chemical vapor deposition (CVD) using a carbon source in the presence of a catalyst. In exemplary embodiments, the present disclosure provides for improved systems and methods for producing single wall carbon nanotubes (SWNTs) by chemical vapor deposition (CVD) using carbon monoxide (CO) disproportionation in the presence of a catalyst composition on a catalyst support material. In one embodiment, the present disclosure provides for systems and methods for producing single wall carbon nanotubes (SWNTs) by chemical vapor deposition (CVD) using carbon monoxide (CO) disproportionation with CO pressure from about 0.20 atm to about 1.0 atm in the presence of a cobalt/molybdenum catalyst composition on a magnesium oxide catalyst support.
    Type: Application
    Filed: February 12, 2008
    Publication date: June 21, 2012
    Applicant: NEW JERSEY INSTITUTE OF TECHNOLOGY
    Inventors: Amit Goyal, Iqbal Zafar
  • Patent number: 8178221
    Abstract: Novel articles and methods to fabricate the same resulting in flexible, {100}<100> or 45°-rotated {100}<100> oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: May 15, 2012
    Inventor: Amit Goyal
  • Patent number: 8119571
    Abstract: Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: February 21, 2012
    Inventors: Amit Goyal, Sukill Kang
  • Publication number: 20120033331
    Abstract: A nanocomposite article that includes a single-crystal or single-crystal-like substrate and heteroepitaxial, phase-separated layer supported by a surface of the substrate and a method of making the same are described. The heteroepitaxial layer can include a continuous, non-magnetic, crystalline, matrix phase, and an ordered, magnetic magnetic phase disposed within the matrix phase. The ordered magnetic phase can include a plurality of self-assembled crystalline nanostructures of a magnetic material. The phase-separated layer and the single crystal substrate can be separated by a buffer layer. An electronic storage device that includes a read-write head and a nanocomposite article with a data storage density of 0.75 Tb/in2 is also described.
    Type: Application
    Filed: November 30, 2010
    Publication date: February 9, 2012
    Applicant: UT-Battelle, LLC
    Inventors: Amit Goyal, Junsoo Shin
  • Publication number: 20110287939
    Abstract: Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.
    Type: Application
    Filed: July 30, 2011
    Publication date: November 24, 2011
    Inventor: Amit Goyal
  • Publication number: 20110268289
    Abstract: For headphone subsystems that employ common ground switches for speaker outputs (for example), there can be a significant issue with cross-talk and ground noise. Here, configurations for an amplifier and switch network are provided, which generally cancel noise from the “ground switch,” so as to provide an improvement over conventional configurations with little overhead. Additionally, the cross-talk for these configurations are not generally dependent on the “ground switch” or speaker impedance.
    Type: Application
    Filed: July 19, 2010
    Publication date: November 3, 2011
    Applicant: Texas Instruments Incorporated
    Inventors: Shailendra K. Baranwal, Amit Goyal
  • Patent number: 8034745
    Abstract: Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic, superconducting and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: October 11, 2011
    Inventor: Amit Goyal
  • Publication number: 20110240480
    Abstract: A nanotube device and a method of depositing nanotubes for device fabrication are disclosed. The method relates to electrophoretic deposition of nanotubes, and allows a control of the number of deposited nanotubes and positioning within a defined region.
    Type: Application
    Filed: June 16, 2011
    Publication date: October 6, 2011
    Applicant: NEW JERSEY INSTITUTE OF TECHNOLOGY
    Inventors: Reginald Conway Farrow, Amit Goyal, Zafar Iqbal, Sheng Liu
  • Patent number: 7964143
    Abstract: A nanotube device and a method of depositing nanotubes for device fabrication are disclosed. The method relates to electrophoretic deposition of nanotubes, and allows a control of the number of deposited nanotubes and positioning within a defined region.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: June 21, 2011
    Assignee: New Jersey Institute of Technology
    Inventors: Reginald Conway Farrow, Amit Goyal, Zafar Iqbal, Sheng Liu
  • Patent number: 7919435
    Abstract: The present invention relates to a method for producing a defect-containing superconducting film, the method comprising (a) depositing a phase-separable layer epitaxially onto a biaxially-textured substrate, wherein the phase-separable layer includes at least two phase-separable components; (b) achieving nanoscale phase separation of the phase-separable layer such that a phase-separated layer including at least two phase-separated components is produced; and (c) depositing a superconducting film epitaxially onto said phase-separated components of the phase-separated layer such that nanoscale features of the phase-separated layer are propagated into the superconducting film.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: April 5, 2011
    Assignee: UT-Battelle, LLC
    Inventor: Amit Goyal
  • Publication number: 20110062446
    Abstract: Novel articles and methods to fabricate the same resulting in flexible, {100}<100> or 45°-rotated {100}<100> oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.
    Type: Application
    Filed: January 28, 2008
    Publication date: March 17, 2011
    Inventor: Amit Goyal
  • Patent number: 7906229
    Abstract: Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: March 15, 2011
    Inventor: Amit Goyal
  • Publication number: 20110034338
    Abstract: A superconducting article includes a substrate having a biaxially textured surface, and an epitaxial biaxially textured superconducting film supported by the substrate. The epitaxial superconducting film includes particles of Ba2RETaO6 and is characterized by a critical current density higher than 1 MA/cm2 at 77K, self-field. In one embodiment the particles are assembled into columns. The particles and nanocolumns of Ba2RETaO6 defects enhance flux pinning which results in improved critical current densities of the superconducting films. Methods of making superconducting films with Ba2RETaO6 defects are also disclosed.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 10, 2011
    Inventors: Amit Goyal, Claudia Cantoni, Eliot Specht, Sung-Hun Wee
  • Publication number: 20110033674
    Abstract: A simple and controlled method to fabricate a 3D, epitaxial, biaxially textured nanofence comprised of single crystalline MgO nanobelt segments or links that grew both vertically and horizontally along <100> directions of the (100) STO substrate was developed. Continuous supply of Ni catalyst during the co-laser ablation of MgO and Ni metal led to the growth of nanobelts with such a unique morphology. Individual single crystalline MgO nanobelts had a square cross-section with high aspect ratios. X-ray diffraction results obtained from an entire MgO nanofence layer confirmed that MgO nanofence had epitaxial relation with STO substrate of [100]MgO?[100]STO. Such oxide nanofences can be used as a 3D biaxially-textured nanotemplate for epitaxial growth of wide-ranging, 3D, electronic, magnetic and electromagnetic nanodevices.
    Type: Application
    Filed: February 24, 2010
    Publication date: February 10, 2011
    Applicant: UT-BATTELLE, LLC
    Inventors: Amit Goyal, Sung-Hun Wee
  • Publication number: 20110034339
    Abstract: An article having a biaxially textured substrate surface and a plurality of vertically-aligned, epitaxial nanopillars supported on the surface substrate is disclosed. The article can include a matrix phase deposited on the biaxially textured surface and between the plurality of vertically-aligned, epitaxial nanopillars. The nanopillars can include a coating. The matrix phase and the vertically-aligned, epitaxial nanopillars can form an electronically active layer selected from the group consisting of a superconducting material, a ferroelectric material, a multiferroic material, a magnetic material, a photovoltaic material, a electrical storage material, and a semiconductor material. A method of making the article is also disclosed.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 10, 2011
    Inventor: AMIT GOYAL
  • Publication number: 20110034336
    Abstract: A superconducting article includes a substrate having a biaxially textured surface, and an epitaxial biaxially textured superconducting film supported by the substrate. The epitaxial superconducting film includes particles of Ba2RENbO6 and is characterized by a critical current density higher than 1 MA/cm2 at 77K, self-field. In one embodiment the particles are assembled into columns. The particles and nanocolumns of Ba2RENbO6 defects enhance flux pinning which results in improved critical current densities of the superconducting films. Methods of making superconducting films with Ba2RENbO6 defects are also disclosed.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 10, 2011
    Inventors: Amit Goyal, Sung-Hun Wee, Eliot Specht, Claudia Cantoni