Patents by Inventor Amit Khandelwal

Amit Khandelwal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9783889
    Abstract: In some embodiments, an apparatus for variable substrate temperature control may include a heater moveable along a central axis of a substrate support; a seal ring disposed about the heater, the seal ring configured to interface with a shadow ring disposed above the heater to form a seal; a plurality of spacer pins configured to support a substrate and disposed within a plurality of through holes formed in the heater, the plurality of spacer pins moveable parallel to the central axis, wherein the plurality of spacer pins control a first distance between the substrate and the heater and a second distance between the substrate and the shadow ring; and a resilient element disposed beneath the seal ring to bias the seal ring toward a backside surface of the heater.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: October 10, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Gwo-Chuan Tzu, Xiaoxiong Yuan, Amit Khandelwal, Avgerinos V. Gelatos, Olkan Cuvalci, Kai Wu, Michael P. Karazim
  • Patent number: 9546419
    Abstract: Methods for controlling crystal size in bulk tungsten layers are disclosed herein. Methods for depositing a bulk tungsten metal layer can include positioning a substrate with a barrier layer in a processing chamber, forming a tungsten nucleation layer, post-treating the nucleation layer with one or more treatment gas cycles including an activating gas and a purging gas, heating the substrate to a deposition temperature, and depositing a bulk tungsten layer with alternating nitrogen flow on the nucleation layer. The post-treatment cycling can be applied optionally to the bulk metal deposition with alternating nitrogen flow.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: January 17, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Amit Khandelwal, Avgerinos V. Gelatos
  • Patent number: 9275865
    Abstract: Methods for plasma treatment of films to remove impurities are disclosed herein. Methods for removing impurities can include positioning a substrate with a barrier layer in a processing chamber, the barrier layer comprising a barrier metal and one or more impurities, maintaining the substrate at a bias, creating a plasma comprising a treatment gas, the treatment gas comprising an inert gas, delivering the treatment gas to the substrate to reduce the ratio of one or more impurities in the barrier layer, and reacting a deposition gas comprising a metal halide and hydrogen-containing gas to deposit a bulk metal layer on the barrier layer. The methods can further include the use of diborane to create selective nucleation in features over surface regions of the substrate.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: March 1, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Benjamin C. Wang, Joshua Collins, Michael Jackson, Avgerinos V. Gelatos, Amit Khandelwal
  • Patent number: 8920564
    Abstract: A substrate support may include a body; an inner ring disposed about the body; an outer ring disposed about the inner ring forming a first opening therebetween; a first seal ring disposed above the first opening; a shadow ring disposed above the inner ring, extending inward from the outer ring and forming a second opening between the shadow and outer rings; a second seal ring disposed above the second opening; a space at least partially defined by the body and the inner, outer, first, second, and shadow rings; a first gap defined between a processing surface of a substrate when present and the shadow ring; and a plurality of second gaps fluidly coupled to the space; wherein the first gap and the plurality of second gaps are configured such that, when a substrate is present, a gas provided to the space flows out of the space through the first gap.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: December 30, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Gwo-Chuan Tzu, Xiaoxiong Yuan, Amit Khandelwal, Benjamin Cheng Wang, Avgerinos V. Gelatos, Kai Wu, Michael P. Karazim, Jing Lin, Olkan Cuvalci
  • Publication number: 20140273451
    Abstract: Methods of filling gaps with tungsten are described. The methods include a tungsten dep-etch-dep sequence to enhance gapfilling yet avoid difficulty in restarting deposition after the intervening etch. The first tungsten deposition may have a nucleation layer or seeding layer to assist growth of the first tungsten deposition. Restarting deposition with a less-than-conductive nucleation layer would impact function of an integrated circuit, and therefore avoiding tungsten “poisoning” during the etch is desirable. The etching step may be performed using a plasma to excite a halogen-containing precursor while the substrate at relatively low temperature (near room temperature or less). The plasma may be local or remote. Another method may be used in combination or separately and involves the introduction of a source of oxygen into the plasma in combination with the halogen-containing precursor.
    Type: Application
    Filed: June 11, 2013
    Publication date: September 18, 2014
    Inventors: Benjamin C. Wang, Amit Khandelwal, Avegerinos V. Gelatos, Joshua Collins, Kedar Sapre, Nitin K. Ingle
  • Publication number: 20140147589
    Abstract: Methods for controlling crystal size in bulk tungsten layers are disclosed herein. Methods for depositing a bulk tungsten metal layer can include positioning a substrate with a barrier layer in a processing chamber, forming a tungsten nucleation layer, post-treating the nucleation layer with one or more treatment gas cycles including an activating gas and a purging gas, heating the substrate to a deposition temperature, and depositing a bulk tungsten layer with alternating nitrogen flow on the nucleation layer. The post-treatment cycling can be applied optionally to the bulk metal deposition with alternating nitrogen flow.
    Type: Application
    Filed: August 15, 2013
    Publication date: May 29, 2014
    Applicant: Applied Materials, Inc.
    Inventors: AMIT KHANDELWAL, Avgerinos V. Gelatos
  • Publication number: 20140120700
    Abstract: Methods for plasma treatment of films to remove impurities are disclosed herein. Methods for removing impurities can include positioning a substrate with a barrier layer in a processing chamber, the barrier layer comprising a barrier metal and one or more impurities, maintaining the substrate at a bias, creating a plasma comprising a treatment gas, the treatment gas comprising an inert gas, delivering the treatment gas to the substrate to reduce the ratio of one or more impurities in the barrier layer, and reacting a deposition gas comprising a metal halide and hydrogen-containing gas to deposit a bulk metal layer on the barrier layer. The methods can further include the use of diborane to create selective nucleation in features over surface regions of the substrate.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 1, 2014
    Inventors: Benjamin C. WANG, Joshua COLLINS, Michael JACKSON, Avgerinos V. GELATOS, Amit KHANDELWAL
  • Patent number: 8563424
    Abstract: Methods for forming cobalt silicide are provided. One method for forming a cobalt silicide material includes exposing a substrate having a silicon-containing material to either a wet etch solution or a pre-clean plasma during a first step and then to a hydrogen plasma during a second step of a pre-clean process. The method further includes depositing a cobalt metal layer on the silicon-containing material by a CVD process, heating the substrate to form a first cobalt silicide layer comprising CoSi at the interface of the cobalt metal layer and the silicon-containing material during a first annealing process, removing any unreacted cobalt metal from the substrate during an etch process, and heating the substrate to form a second cobalt silicide layer comprising CoSi2 during a second annealing process.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: October 22, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Seshadri Ganguli, Sang-Ho Yu, See-Eng Phan, Mei Chang, Amit Khandelwal, Hyoung-Chan Ha
  • Patent number: 8551880
    Abstract: A method for fabricating a semiconductor device is described. A substrate is provided having a patterned dielectric layer disposed thereon. A trench is formed in the dielectric layer. The surfaces of the trench are treated with an ammonia-based plasma process. A metal layer is then formed in the trench.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: October 8, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Bencherki Mebarki, Amit Khandelwal, Linh H. Thanh
  • Publication number: 20130247826
    Abstract: In some embodiments, an apparatus for variable substrate temperature control may include a heater moveable along a central axis of a substrate support; a seal ring disposed about the heater, the seal ring configured to interface with a shadow ring disposed above the heater to form a seal; a plurality of spacer pins configured to support a substrate and disposed within a plurality of through holes formed in the heater, the plurality of spacer pins moveable parallel to the central axis, wherein the plurality of spacer pins control a first distance between the substrate and the heater and a second distance between the substrate and the shadow ring; and a resilient element disposed beneath the seal ring to bias the seal ring toward a backside surface of the heater.
    Type: Application
    Filed: March 26, 2012
    Publication date: September 26, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: GWO-CHUAN TZU, XIAOXIONG YUAN, AMIT KHANDELWAL, AVGERINOS V. GELATOS, OLKAN CUVALCI, KAI WU, MICHAEL P. KARAZIM
  • Patent number: 8513116
    Abstract: Embodiments of the invention provide a method for depositing tungsten-containing materials. In one embodiment, a method includes forming a tungsten nucleation layer over an underlayer disposed on the substrate while sequentially providing a tungsten precursor and a reducing gas into a process chamber during an atomic layer deposition (ALD) process and depositing a tungsten bulk layer over the tungsten nucleation layer, wherein the reducing gas contains hydrogen gas and a hydride compound (e.g., diborane) and has a hydrogen/hydride flow rate ratio of about 500:1 or greater. In some examples, the method includes flowing the hydrogen gas into the process chamber at a flow rate within a range from about 1 slm to about 20 slm and flowing a mixture of the hydride compound and a carrier gas into the process chamber at a flow rate within a range from about 50 sccm to about 500 sccm.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: August 20, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Amit Khandelwal, Madhu Moorthy, Avgerinos V. Gelatos, Kai Wu
  • Publication number: 20120244699
    Abstract: Embodiments of the invention provide a method for depositing tungsten-containing materials. In one embodiment, a method includes forming a tungsten nucleation layer over an underlayer disposed on the substrate while sequentially providing a tungsten precursor and a reducing gas into a process chamber during an atomic layer deposition (ALD) process and depositing a tungsten bulk layer over the tungsten nucleation layer, wherein the reducing gas contains hydrogen gas and a hydride compound (e.g., diborane) and has a hydrogen/hydride flow rate ratio of about 500:1 or greater. In some examples, the method includes flowing the hydrogen gas into the process chamber at a flow rate within a range from about 1 slm to about 20 slm and flowing a mixture of the hydride compound and a carrier gas into the process chamber at a flow rate within a range from about 50 sccm to about 500 sccm.
    Type: Application
    Filed: June 7, 2012
    Publication date: September 27, 2012
    Applicant: Applied Materials, Inc.
    Inventors: AMIT KHANDELWAL, Madhu Moorthy, Avgerinos V. Gelatos, Kai Wu
  • Publication number: 20120214303
    Abstract: Embodiments of the invention generally provide methods for forming cobalt silicide. In one embodiment, a method for forming a cobalt silicide material includes exposing a substrate having a silicon-containing material to either a wet etch solution or a pre-clean plasma during a first step and then to a hydrogen plasma during a second step of a pre-clean process. The method further includes depositing a cobalt metal layer on the silicon-containing material by a CVD process, heating the substrate to form a first cobalt silicide layer comprising CoSi at the interface of the cobalt metal layer and the silicon-containing material during a first annealing process, removing any unreacted cobalt metal from the substrate during an etch process, and heating the substrate to form a second cobalt silicide layer comprising CoSi2 during a second annealing process.
    Type: Application
    Filed: April 26, 2012
    Publication date: August 23, 2012
    Inventors: SESHADRI GANGULI, Sang-Ho Yu, See-Eng Phan, Mei Chang, Amit Khandelwal, Hyoung-Chan Ha
  • Patent number: 8211799
    Abstract: Embodiments of the invention provide a method for depositing tungsten-containing materials. In one embodiment, a method includes forming a tungsten nucleation layer over an underlayer disposed on the substrate while sequentially providing a tungsten precursor and a reducing gas into a process chamber during an atomic layer deposition (ALD) process and depositing a tungsten bulk layer over the tungsten nucleation layer, wherein the reducing gas contains hydrogen gas and a hydride compound (e.g., diborane) and has a hydrogen/hydride flow rate ratio of about 500:1 or greater. In some examples, the method includes flowing the hydrogen gas into the process chamber at a flow rate within a range from about 1 slm to about 20 slm and flowing a mixture of the hydride compound and a carrier gas into the process chamber at a flow rate within a range from about 50 sccm to about 500 sccm.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: July 3, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Amit Khandelwal, Madhu Moorthy, Avgerinos V. Gelatos, Kai Wu
  • Patent number: 8187970
    Abstract: Methods for forming cobalt silicide materials are disclosed herein. In one example, a method for forming a cobalt silicide material includes exposing a substrate having a silicon-containing material to either a wet etch solution or a pre-clean plasma during a first step and then to a hydrogen plasma during a second step of a pre-clean process. The exemplary method further includes depositing a cobalt metal layer on the silicon-containing material by a CVD process, heating the substrate to form a first cobalt silicide layer comprising CoSi at the interface of the cobalt metal layer and the silicon-containing material during a first annealing process, removing any unreacted cobalt metal from the first cobalt silicide layer during an etch process, and heating the substrate to form a second cobalt silicide layer comprising CoSi2 during a second annealing process.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: May 29, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Seshadri Ganguli, Sang-Ho Yu, See-Eng Phan, Mei Chang, Amit Khandelwal, Hyoung-Chan Ha
  • Publication number: 20120003388
    Abstract: A substrate support may include a body; an inner ring disposed about the body; an outer ring disposed about the inner ring forming a first opening therebetween; a first seal ring disposed above the first opening; a shadow ring disposed above the inner ring, extending inward from the outer ring and forming a second opening between the shadow and outer rings; a second seal ring disposed above the second opening; a space at least partially defined by the body and the inner, outer, first, second, and shadow rings; a first gap defined between a processing surface of a substrate when present and the shadow ring; and a plurality of second gaps fluidly coupled to the space; wherein the first gap and the plurality of second gaps are configured such that, when a substrate is present, a gas provided to the space flows out of the space through the first gap.
    Type: Application
    Filed: June 27, 2011
    Publication date: January 5, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: GWO-CHUAN TZU, XIAOXIONG YUAN, AMIT KHANDELWAL, BENJAMIN CHENG WANG, AVGERINOS V. GELATOS, KAI WU, MICHAEL P. KARAZIM, JING LIN, OLKAN CUVALCI
  • Publication number: 20120003833
    Abstract: Methods for forming tungsten-containing layers on substrates are provided herein. In some embodiments, a method for forming a tungsten-containing layer on a substrate disposed in a process chamber may include mixing hydrogen and a hydride to form a first process gas; introducing the first process gas to the process chamber; exposing the substrate in the process chamber to the first process gas for a first period of time to form a conditioned substrate surface; subsequently purging the process chamber of the first process gas; exposing the substrate to a second process gas comprising a tungsten precursor for a second period of time to form a tungsten-containing nucleation layer atop the conditioned substrate surface; and subsequently purging the process chamber of the second process gas.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 5, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: AMIT KHANDELWAL, KAI WU, EMILY RENUART, JINQIU CHEN, AVGERINOS V. GELATOS
  • Patent number: 8071478
    Abstract: A method of controlling the resistivity and morphology of a tungsten film is provided, comprising depositing a first film of a bulk tungsten layer on a substrate during a first deposition stage by (i) introducing a continuous flow of a reducing gas and a pulsed flow of a tungsten-containing compound to a process chamber to deposit tungsten on a surface of the substrate, (ii) flowing the reducing gas without flowing the tungsten-containing compound into the chamber to purge the chamber, and repeating steps (i) through (ii) until the first film fills vias in the substrate surface, increasing the pressure in the process chamber, and during a second deposition stage after the first deposition stage, depositing a second film of the bulk tungsten layer by providing a flow of reducing gas and tungsten-containing compound to the process chamber until a second desired thickness is deposited.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: December 6, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Kai Wu, Amit Khandelwal, Averginos V. Gelatos
  • Publication number: 20110244682
    Abstract: Embodiments of the invention provide a method for depositing tungsten-containing materials. In one embodiment, a method includes forming a tungsten nucleation layer over an underlayer disposed on the substrate while sequentially providing a tungsten precursor and a reducing gas into a process chamber during an atomic layer deposition (ALD) process and depositing a tungsten bulk layer over the tungsten nucleation layer, wherein the reducing gas contains hydrogen gas and a hydride compound (e.g., diborane) and has a hydrogen/hydride flow rate ratio of about 500:1 or greater. In some examples, the method includes flowing the hydrogen gas into the process chamber at a flow rate within a range from about 1 slm to about 20 slm and flowing a mixture of the hydride compound and a carrier gas into the process chamber at a flow rate within a range from about 50 sccm to about 500 sccm.
    Type: Application
    Filed: June 14, 2011
    Publication date: October 6, 2011
    Inventors: AMIT KHANDELWAL, Madhu MOORTHY, Avgerinos V. GELATOS, Kai WU
  • Patent number: 7964505
    Abstract: Embodiments of the invention provide an improved process for depositing tungsten-containing materials. The process utilizes soak processes and vapor deposition processes, such as atomic layer deposition (ALD) to provide tungsten films having significantly improved surface uniformity and production level throughput. In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes positioning a substrate within a process chamber, wherein the substrate contains an underlayer disposed thereon, exposing the substrate sequentially to a tungsten precursor and a reducing gas to deposit a tungsten nucleation layer on the underlayer during an ALD process, wherein the reducing gas contains a hydrogen/hydride flow rate ratio of about 40:1, 100:1, 500:1, 800:1, 1,000:1, or greater, and depositing a tungsten bulk layer on the tungsten nucleation layer. The reducing gas contains a hydride compound, such as diborane, silane, or disilane.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: June 21, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Amit Khandelwal, Madhu Moorthy, Avgerinog V. Gelatos, Kai Wu