Patents by Inventor Amlan Majumdar

Amlan Majumdar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9941363
    Abstract: A semiconductor device comprises a first layer of a substrate arranged on a second layer of the substrate the second layer of the substrate including a doped III-V semiconductor material barrier layer, a gate stack arranged on a channel region of the first layer of a substrate, a spacer arranged adjacent to the gate stack on the first layer of the substrate, an undoped epitaxially grown III-V semiconductor material region arranged on the second layer of the substrate, and an epitaxially grown source/drain region arranged on the undoped epitaxially grown III-V semiconductor material region, and a portion of the first layer of the substrate.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: April 10, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng-Wei Cheng, Pranita Kerber, Amlan Majumdar, Yanning Sun
  • Patent number: 9922830
    Abstract: Techniques for forming dual III-V semiconductor channel materials to enable fabrication of different device types on the same chip/wafer are provided. In one aspect, a method of forming dual III-V semiconductor channel materials on a wafer includes the steps of: providing a wafer having a first III-V semiconductor layer on an oxide; forming a second III-V semiconductor layer on top of the first III-V semiconductor layer, wherein the second III-V semiconductor layer comprises a different material with an electron affinity that is less than an electron affinity of the first III-V semiconductor layer; converting the first III-V semiconductor layer in at least one second active area to an insulator using ion implantation; and removing the second III-V semiconductor layer from at least one first active area selective to the first III-V semiconductor layer.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: March 20, 2018
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Isaac Lauer, Amlan Majumdar, Jeffrey W. Sleight
  • Publication number: 20180047846
    Abstract: A method of fabricating a MOS transistor having a thinned channel region is described. The channel region is etched following removal of a dummy gate. The source and drain regions have relatively low resistance with the process.
    Type: Application
    Filed: October 11, 2017
    Publication date: February 15, 2018
    Inventors: Justin K. Brask, Robert S. Chau, Suman Datta, Mark L. Doczy, Brian S. Doyle, Jack T. Kavalieros, Amlan Majumdar, Matthew V. Metz, Marko Radosavljevic
  • Patent number: 9882021
    Abstract: A method of forming a semiconductor substrate including a type III-V semiconductor material directly on a dielectric material that includes forming a trench in a dielectric layer, and forming a via within the trench extending from a base of the trench to an exposed upper surface of an underlying semiconductor including substrate. A III-V semiconductor material is formed extending from the exposed upper surface of the semiconductor substrate filling at least a portion of the trench.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: January 30, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng-Wei Cheng, Edward W. Kiewra, Amlan Majumdar, Uzma Rana, Devendra K. Sadana, Kuen-Ting Shiu, Yanning Sun
  • Patent number: 9865688
    Abstract: A structure and method for forming a substrate, a buffer layer disposed on the substrate, an oxide layer disposed on the buffer layer, and a fin comprising a semiconductor material disposed on the oxide layer.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: January 9, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anirban Basu, Guy M. Cohen, Amlan Majumdar, Yu Zhu
  • Patent number: 9806195
    Abstract: A method of fabricating a MOS transistor having a thinned channel region is described. The channel region is etched following removal of a dummy gate. The source and drain regions have relatively low resistance with the process.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: October 31, 2017
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Robert S. Chau, Suman Datta, Mark L. Doczy, Brian S. Doyle, Jack T. Kavalieros, Amlan Majumdar, Matthew V. Metz, Marko Radosavljevic
  • Publication number: 20170309734
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Application
    Filed: June 16, 2017
    Publication date: October 26, 2017
    Inventors: Suman DATTA, Mantu K. HUDAIT, Mark L. DOCZY, Jack T. KAVALIEROS, Amlan MAJUMDAR, Justin K. BRASK, Been-Yih JIN, Matthew V. METZ, Robert S. CHAU
  • Patent number: 9773903
    Abstract: A semiconductor structure containing a high mobility semiconductor channel material, i.e., a III-V semiconductor material, and asymmetrical source/drain regions located on the sidewalls of the high mobility semiconductor channel material is provided. The asymmetrical source/drain regions can aid in improving performance of the resultant device. The source region contains a source-side epitaxial doped semiconductor material, while the drain region contains a drain-side epitaxial doped semiconductor material and an underlying portion of the high mobility semiconductor channel material.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: September 26, 2017
    Assignee: International Business Machines Corporation
    Inventors: Cheng-Wei Cheng, Pranita Kerber, Effendi Leobandung, Amlan Majumdar, Renee T. Mo, Yanning Sun
  • Patent number: 9761724
    Abstract: A method of patterning a semiconductor film is described. According to an embodiment of the present invention, a hard mask material is formed on a silicon film having a global crystal orientation wherein the semiconductor film has a first crystal plane and second crystal plane, wherein the first crystal plane is denser than the second crystal plane and wherein the hard mask is formed on the second crystal plane. Next, the hard mask and semiconductor film are patterned into a hard mask covered semiconductor structure. The hard mask covered semiconductor structured is then exposed to a wet etch process which has sufficient chemical strength to etch the second crystal plane but insufficient chemical strength to etch the first crystal plane.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: September 12, 2017
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Jack Kavalieros, Brian S. Doyle, Uday Shah, Suman Datta, Amlan Majumdar, Robert S. Chau
  • Patent number: 9748357
    Abstract: Embodiments include a method for fabricating a semiconductor device and the resulting structure comprising forming a semi-insulating bottom barrier on a semiconductor substrate. A channel is formed on the bottom barrier. A semi-insulating layer is epitaxially formed on the bottom barrier, laterally adjacent to the channel. The semi-insulating layer is formed in such a way that stress is induced onto the channel. A CMOS transistor is formed on the channel.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: August 29, 2017
    Assignee: International Business Machines Corporation
    Inventors: Anirban Basu, Guy Cohen, Amlan Majumdar
  • Patent number: 9711648
    Abstract: A semiconductor structure is provided that includes a channel material portion composed of a III-V compound semiconductor located on a mesa portion of a substrate. A dielectric spacer structure is located on each sidewall surface of the channel material portion and each sidewall surface of the mesa portion of the substrate. The dielectric spacer structure has a height that is greater than a height of the channel material portion. An isolation structure is located on each dielectric spacer structure, wherein a sidewall edge of the isolation structure is located between an innermost sidewall surface and an outermost sidewall surface of the dielectric spacer structure.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: July 18, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Effendi Leobandung, Chung-Hsun Lin, Amlan Majumdar, Yanning Sun
  • Patent number: 9704958
    Abstract: An electrical device comprising a base semiconductor layer of a silicon including material; a dielectric layer present on the base semiconductor layer; a first III-V semiconductor material area present in a trench in the dielectric layer, wherein a via of the III-V semiconductor material extends from the trench through the dielectric layer into contact with the base semiconductor layer; a second III-V semiconductor material area present in the trench in the dielectric layer wherein the second III-V semiconductor material area does not have a via extending through the dielectric layer into contact with the base semiconductor layer; and a semiconductor device present on the second III-V semiconductor material area, wherein the first III-V semiconductor material area and the second III-V semiconductor material area are separated by a low aspect ratio trench extending to the dielectric layer.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: July 11, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng-Wei Cheng, Edward William Kiewra, Amlan Majumdar, Devendra K. Sadana, Kuen-Ting Shiu, Yanning Sun
  • Patent number: 9691856
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: June 27, 2017
    Assignee: Intel Corporation
    Inventors: Suman Datta, Mantu K. Hudait, Mark L. Doczy, Jack T. Kavalieros, Amlan Majumdar, Justin K. Brask, Been-Yih Jin, Matthew V. Metz, Robert S. Chau
  • Publication number: 20170179238
    Abstract: An electrical device comprising a base semiconductor layer of a silicon including material; a dielectric layer present on the base semiconductor layer; a first III-V semiconductor material area present in a trench in the dielectric layer, wherein a via of the III-V semiconductor material extends from the trench through the dielectric layer into contact with the base semiconductor layer; a second semiconductor material area present in the trench in the dielectric layer wherein the second III-V semiconductor material area does not have a via extending through the dielectric layer into contact with the base semiconductor layer; and a semiconductor device present on the second III-V semiconductor material area, wherein the first III-V semiconductor material area and the second III-V semiconductor material area are separated by a low aspect ratio trench extending to the dielectric layer.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: CHENG-WEI CHENG, EDWARD WILLIAM KIEWRA, AMLAN MAJUMDAR, DEVENDRA K. SADANA, KUEN-TING SHIU, YANNING SUN
  • Publication number: 20170179237
    Abstract: An electrical device comprising a base semiconductor layer of a silicon including material; a dielectric layer present on the base semiconductor layer; a first III-V semiconductor material area present in a trench in the dielectric layer, wherein a via of the III-V semiconductor material extends from the trench through the dielectric layer into contact with the base semiconductor layer; a second semiconductor material area present in the trench in the dielectric layer wherein the second III-V semiconductor material area does not have a via extending through the dielectric layer into contact with the base semiconductor layer; and a semiconductor device present on the second III-V semiconductor material area, wherein the first III-V semiconductor material area and the second III-V semiconductor material area are separated by a low aspect ratio trench extending to the dielectric layer.
    Type: Application
    Filed: February 27, 2017
    Publication date: June 22, 2017
    Inventors: CHENG-WEI CHENG, EDWARD WILLIAM KIEWRA, AMLAN MAJUMDAR, DEVENDRA K. SADANA, KUEN-TING SHIU, YANNING SUN
  • Publication number: 20170179232
    Abstract: A method for forming a semiconductor device comprising forming a sacrificial gate stack on a channel region of first layer of a substrate, forming a spacer adjacent to the sacrificial gate stack, forming a raised source/drain region on the first layer of the substrate adjacent to the spacer, forming a dielectric layer over the raised source/drain region, removing the sacrificial gate stack to expose the channel region of the first layer of the substrate, and implanting dopants in a second layer of the substrate to form an implant region in the second layer below the channel region of the first layer of the substrate, where the first layer of the substrate is arranged on the second layer of the substrate.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Cheng-Wei Cheng, Pranita Kerber, Amlan Majumdar, Yanning Sun
  • Publication number: 20170179288
    Abstract: A semiconductor device comprises a first layer of a substrate arranged on a second layer of the substrate the second layer of the substrate including a doped III-V semiconductor material barrier layer, a gate stack arranged on a channel region of the first layer of a substrate, a spacer arranged adjacent to the gate stack on the first layer of the substrate, an undoped epitaxially grown III-V semiconductor material region arranged on the second layer of the substrate, and an epitaxially grown source/drain region arranged on the undoped epitaxially grown III-V semiconductor material region, and a portion of the first layer of the substrate.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Cheng-Wei Cheng, Pranita Kerber, Amlan Majumdar, Yanning Sun
  • Patent number: 9666684
    Abstract: A method including forming a III-V compound semiconductor-containing heterostructure, forming a gate dielectric having a dielectric constant greater than 4.0 positioned within a gate trench, the gate trench formed within the III-V compound semiconductor-containing heterostructure, and forming a gate conductor within the gate trench on top of the gate dielectric, the gate conductor extending above the III-V compound semiconductor heterostructure. The method further including forming a pair of sidewall spacers along opposite sides of a portion of the gate conductor extending above the III-V compound semiconductor-containing heterostructure and forming a pair of source-drain contacts self-aligned to the pair of sidewall spacers.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: May 30, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Anirban Basu, Amlan Majumdar, Yanning Sun
  • Publication number: 20170148896
    Abstract: A method for fabricating a multigate device includes forming a fin on a substrate of the multigate device, the fin being formed of a semiconductor material, growing a first conformal epitaxial layer directly on the fin and substrate, wherein the first conformal epitaxial layer is highly doped, growing a second conformal epitaxial layer directly on the first conformal epitaxial layer, wherein the second conformal epitaxial layer is highly doped, selectively removing a portion of second epitaxial layer to expose a portion of the first conformal epitaxial layer, selectively removing a portion of the first conformal epitaxial layer to expose a portion of the fin and thereby form a trench, and forming a gate within the trench.
    Type: Application
    Filed: February 7, 2017
    Publication date: May 25, 2017
    Inventors: ANIRBAN BASU, GUY COHEN, AMLAN MAJUMDAR
  • Patent number: 9653606
    Abstract: A method for fabricating a multigate device includes forming a fin on a substrate of the multigate device, the fin being formed of a semiconductor material, growing a first conformal epitaxial layer directly on the fin and substrate, wherein the first conformal epitaxial layer is highly doped, growing a second conformal epitaxial layer directly on the first conformal epitaxial layer, wherein the second conformal epitaxial layer is highly doped, selectively removing a portion of second epitaxial layer to expose a portion of the first conformal epitaxial layer, selectively removing a portion of the first conformal epitaxial layer to expose a portion of the fin and thereby form a trench, and forming a gate within the trench.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: May 16, 2017
    Assignee: International Business Machines Corporation
    Inventors: Anirban Basu, Guy Cohen, Amlan Majumdar