Patents by Inventor Amos Fenigstein

Amos Fenigstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7754559
    Abstract: A capacitor structure is fabricated with only slight modifications to a conventional single-poly CMOS process. After front-end processing is completed, grooves are etched through the pre-metal dielectric layer to expose polysilicon structures, which may be salicided or non-salicided. A dielectric layer is formed over the exposed polysilicon structures. A conventional contact process module is then used to form contact openings through the pre-metal dielectric layer. The mask used to form the contact openings is then removed, and conventional contact metal deposition steps are performed, thereby simultaneously filling the contact openings and the grooves with the contact (electrode) metal stack. A planarization step removes the upper portion of the metal stack, thereby leaving metal contacts in the contact openings, and metal electrodes in the grooves. The metal electrodes may form, for example, transistor gates, EEPROM control gates or capacitor plates.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: July 13, 2010
    Assignee: Tower Semiconductor Ltd.
    Inventors: Efraim Aloni, Yakov Roizin, Alexey Heiman, Michael Lisiansky, Amos Fenigstein, Myriam Buchbinder
  • Patent number: 7678603
    Abstract: A CMOS image sensor (CIS) device includes an array of pixels, each pixel including a sensing element (e.g., a photodiode) and access circuitry. To facilitate the passage of light to the photodiode, each pixel includes a via wave guide (VWG) defined in the metallization layer formed over the pixel's photodiode. The VWG includes an upper light concentrator having a curved (e.g., parabolic) surface extending from a relatively wide upper opening to a relatively small lower opening. The VWG also includes a lower section extending between the lower opening of the light concentrator and the associated photodiode. A mirror coating is optionally formed on the surface of the VWG. An optional light-guiding material and/or color filter materials are disposed inside the VWG. An optional microlens is formed over the VWG.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: March 16, 2010
    Assignee: Tower Semiconductor Ltd.
    Inventors: Hai Reznik, Amos Fenigstein, Doron Amihood, David Choen
  • Patent number: 7671396
    Abstract: A capacitor for a single-poly floating gate device is fabricated on a semiconductor substrate along with low and high voltage transistors. Each transistor has a gate width greater than or equal to a minimum gate width of the associated process. A dielectric layer is formed over the substrate, and a patterned polysilicon structure is formed over the dielectric layer. The patterned polysilicon structure includes one or more narrow polysilicon lines, each having a width less than the minimum gate width. The LDD implants for low and high voltage transistors of the same conductivity type are allowed to enter the substrate, using the patterned polysilicon structure as a mask. A thermal drive-in cycle results in a continuous diffusion region that merges under the narrow polysilicon lines. Contacts formed adjacent to the narrow polysilicon lines and a metal-1 trace connected to the contacts may increase the resulting capacitance.
    Type: Grant
    Filed: January 4, 2006
    Date of Patent: March 2, 2010
    Assignee: Tower Semiconductor Ltd.
    Inventors: Amos Fenigstein, Zohar Kuritsky, Asaf Lahav, Ira Naot, Yakov Roizin
  • Patent number: 7608837
    Abstract: An X-ray image sensor having scintillating material embedded into wave-guide structures fabricated in a CMOS image sensor (CIS). After the CIS has been fabricated, openings (deep pores) are formed in the back side of the CIS wafer. These openings terminate at a distance of about 1 to 5 microns below the upper silicon surface of the wafer. The depth of these openings can be controlled by stopping on a buried insulating layer, or by stopping on an epitaxial silicon layer having a distinctive doping concentration. The openings are aligned with corresponding photodiodes of the CIS. The openings may have a shape that narrows as approaching the photodiodes. A thin layer of a reflective material may be formed on the sidewalls of the openings, thereby improving the efficiency of the resulting waveguide structures. Scintillating material (e.g., CsI(Tl)) is introduced into the openings using a ForceFill™ technology or by mechanical pressing.
    Type: Grant
    Filed: November 24, 2006
    Date of Patent: October 27, 2009
    Assignee: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Amos Fenigstein, Avi Strum, Alexei Heiman, Doron Pardess
  • Publication number: 20090261235
    Abstract: A CMOS image sensor in which each pixel includes a conventional pinned diode (photodiode), a Wide Dynamic Range (WDR) detection (e.g., a simplified time-to-saturation (TTS)) circuit, a correlated double sampling (CDS) circuit, and a single output chain that is shared by both the CDS and WDR circuits. The pinned diode is used in the conversion of photons into charge in each pixel. In one embodiment, light received by the photodiode is processed using a TTS operation during the CDS integration phase, and the resulting TTS output signal is used to determine whether the photodiode is saturated. When the photodiode is saturated, the TTS output signal is processed to determine the amount of light received by the photodiode. When the photodiode is not saturated, the amount of light received by the photodiode is determined using signals generated by the readout phase of the CDS operation.
    Type: Application
    Filed: April 15, 2009
    Publication date: October 22, 2009
    Applicant: Tower Semiconductor Ltd.
    Inventors: Assaf Lahav, Amos Fenigstein
  • Publication number: 20090239351
    Abstract: A capacitor structure is fabricated with only slight modifications to a conventional single-poly CMOS process. After front-end processing is completed, grooves are etched through the pre-metal dielectric layer to expose polysilicon structures, which may be salicided or non-salicided. A dielectric layer is formed over the exposed polysilicon structures. A conventional contact process module is then used to form contact openings through the pre-metal dielectric layer. The mask used to form the contact openings is then removed, and conventional contact metal deposition steps are performed, thereby simultaneously filling the contact openings and the grooves with the contact (electrode) metal stack. A planarization step removes the upper portion of the metal stack, thereby leaving metal contacts in the contact openings, and metal electrodes in the grooves. The metal electrodes may form, for example, transistor gates, EEPROM control gates or capacitor plates.
    Type: Application
    Filed: March 19, 2008
    Publication date: September 24, 2009
    Applicant: TOWER SEMICONDUCTOR LTD.
    Inventors: Efraim Aloni, Yakov Roizin, Alexey Helman, Michael Lisiansky, Amos Fenigstein, Myriam Buchbinder
  • Publication number: 20090181530
    Abstract: A method for improving the reliability of a high-k dielectric layer or a high-k dielectric stack by forming an amorphous high-k dielectric layer over an insulating layer, doping the amorphous high-k dielectric layer with nitrogen atoms, and subsequently heating the resulting structure at a temperature greater than or equal to the crystallization temperature of the high-k dielectric material, thereby transforming the high-k dielectric material from an amorphous state to a crystalline state, and causing nitrogen atoms to diffuse into the insulating layer.
    Type: Application
    Filed: January 14, 2008
    Publication date: July 16, 2009
    Applicant: Tower Semiconductor Ltd.
    Inventors: Michael Lisiansky, Yakov Roizin, Alexey Heiman, Amos Fenigstein
  • Publication number: 20090181491
    Abstract: An X-ray image sensor having scintillating material embedded into wave-guide structures fabricated in a CMOS image sensor (CIS). After the CIS has been fabricated, openings (deep pores) are formed in the back side of the CIS wafer. These openings terminate at a distance of about 1 to 5 microns below the upper silicon surface of the wafer. The depth of these openings can be controlled by stopping on a buried insulating layer, or by stopping on an epitaxial silicon layer having a distinctive doping concentration. The openings are aligned with corresponding photodiodes of the CIS. The openings may have a shape that narrows as approaching the photodiodes. A thin layer of a reflective material may be formed on the sidewalls of the openings, thereby improving the efficiency of the resulting waveguide structures. Scintillating material (e.g., CsI(Tl)) is introduced into the openings using a ForceFill™ technology or by mechanical pressing.
    Type: Application
    Filed: February 20, 2009
    Publication date: July 16, 2009
    Applicant: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Amos Fenigstein, Avi Strum, Alexey Heiman, Doron Pardess
  • Patent number: 7482233
    Abstract: An IC includes both “volatile” CMOS transistors (FETs) and embedded non-volatile memory (NVM) cells, both including polysilicon gate structures, sidewall oxide layers, sidewall spacer structures, and source/drain regions. The sidewall spacers of both the NVM cells and the FETs are made up of a spacer material with local charge storage nodes that is capable of storing electrical charge (e.g., silicon-nitride with traps or oxide with silicon nanocrystals). The source/drain regions of the NVM cells omit lightly-doped drains (which are used in the CMOS FETs), and the NVM cells are formed with thinner sidewall oxide layers than the CMOS FETs to facilitate programming/erasing operations. A production method includes a modified CMOS process flow where the CMOS FET gate structures receive different source/drain diffusions and oxides than the NVM gate structures, but both receive substantially identical sidewall spacers, which are used as charge storage structures in the NVM cells.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: January 27, 2009
    Assignee: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Amos Fenigstein
  • Patent number: 7400538
    Abstract: The efficient removal of parasitic electron charges from the ONO structure of an NROM cell by periodically applying a negative gate refresh voltage in a way that injects holes from the substrate into the ONO structure. Initially, after each erase pulse is generated and an unacceptable erase state is detected, the erase pulse magnitude is incrementally increased to compensate for the increasing parasitic electrons. When a predetermined maximum drain voltage is reached, the negative gate refresh voltage is applied to refresh the ONO structure, and the drain voltage is reset to an initial state. A novel NROM cell uses a P+ doped polysilicon gate or Top Oxide produced with a high-k dielectric (Alumina) to facilitate blocking the injection of gate electrons, and the Bottom Oxide thickness is selectively thinned to increase hole injection.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: July 15, 2008
    Assignee: Tower Semiconductor Ltd.
    Inventors: Evgeny Pikhay, Yakov Roizin, Alexey Heiman, Amos Fenigstein
  • Publication number: 20080160689
    Abstract: A capacitor for a single-poly floating gate device is fabricated on a semiconductor substrate along with low and high voltage transistors. Each transistor has a gate width greater than or equal to a minimum gate width of the associated process. A dielectric layer is formed over the substrate, and a patterned polysilicon structure is formed over the dielectric layer. The patterned polysilicon structure includes one or more narrow polysilicon lines, each having a width less than the minimum gate width. The LDD implants for low and high voltage transistors of the same conductivity type are allowed to enter the substrate, using the patterned polysilicon structure as a mask. A thermal drive-in cycle results in a continuous diffusion region that merges under the narrow polysilicon lines. Contacts formed adjacent to the narrow polysilicon lines and a metal-1 trace connected to the contacts may increase the resulting capacitance.
    Type: Application
    Filed: March 12, 2008
    Publication date: July 3, 2008
    Applicant: Tower Semiconductor Ltd.
    Inventors: Amos Fenigstein, Zohar Kuritsky, Assaf Lahav, Ira Naot, Yakov Roizin
  • Publication number: 20080145965
    Abstract: A CMOS image sensor (CIS) device includes an array of pixels, each pixel including a sensing element (e.g., a photodiode) and access circuitry. To facilitate the passage of light to the photodiode, each pixel includes a via wave guide (VWG) defined in the metallization layer formed over the pixel's photodiode. The VWG includes an upper light concentrator having a curved (e.g., parabolic) surface extending from a relatively wide upper opening to a relatively small lower opening. The VWG also includes a lower section extending between the lower opening of the light concentrator and the associated photodiode. A mirror coating is optionally formed on the surface of the VWG. An optional light-guiding material and/or color filter materials are disposed inside the VWG. An optional microlens is formed over the VWG.
    Type: Application
    Filed: February 26, 2008
    Publication date: June 19, 2008
    Applicant: Tower Semiconductor Ltd.
    Inventors: Hai Reznik, Amos Fenigstein, Doron Amihood, David Cohen
  • Publication number: 20080121808
    Abstract: An X-ray image sensor having scintillating material embedded into wave-guide structures fabricated in a CMOS image sensor (CIS). After the CIS has been fabricated, openings (deep pores) are formed in the back side of the CIS wafer. These openings terminate at a distance of about 1 to 5 microns below the upper silicon surface of the wafer. The depth of these openings can be controlled by stopping on a buried insulating layer, or by stopping on an epitaxial silicon layer having a distinctive doping concentration. The openings are aligned with corresponding photodiodes of the CIS. The openings may have a shape that narrows as approaching the photodiodes. A thin layer of a reflective material may be formed on the sidewalls of the openings, thereby improving the efficiency of the resulting waveguide structures. Scintillating material (e.g., CsI(Tl)) is introduced into the openings using a ForceFill™ technology or by mechanical pressing.
    Type: Application
    Filed: November 24, 2006
    Publication date: May 29, 2008
    Applicant: TOWER SEMICONDUCTOR LTD.
    Inventors: Yakov Roizin, Amos Fenigstein, Avi Strum, Alexei Heiman, Doron Pardess
  • Patent number: 7358583
    Abstract: A CMOS image sensor (CIS) device includes an array of pixels, each pixel including a sensing element (e.g., a photodiode) and access circuitry. To facilitate the passage of light to the photodiode, each pixel includes a via wave guide (VWG) defined in the metallization layer formed over the pixel's photodiode. The VWG includes an upper light concentrator having a curved (e.g., parabolic) surface extending from a relatively wide upper opening to a relatively small lower opening. The VWG also includes a lower section extending between the lower opening of the light concentrator and the associated photodiode. A mirror coating is optionally formed on the surface of the VWG. An optional light-guiding material and/or color filter materials are disposed inside the VWG. An optional microlens is formed over the VWG.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: April 15, 2008
    Assignee: Tower Semiconductor Ltd.
    Inventors: Hai Reznik, Amos Fenigstein, Doron Amihood, David Cohen
  • Publication number: 20080084764
    Abstract: The efficient removal of parasitic electron charges from the ONO structure of an NROM cell by periodically applying a negative gate refresh voltage in a way that injects holes from the substrate into the ONO structure. Initially, after each erase pulse is generated and an unacceptable erase state is detected, the erase pulse magnitude is incrementally increased to compensate for the increasing parasitic electrons. When a predetermined maximum drain voltage is reached, the negative gate refresh voltage is applied to refresh the ONO structure, and the drain voltage is reset to an initial state. A novel NROM cell uses a P+ doped polysilicon gate or Top Oxide produced with a high-k dielectric (Alumina) to facilitate blocking the injection of gate electrons, and the Bottom Oxide thickness is selectively thinned to increase hole injection.
    Type: Application
    Filed: October 5, 2006
    Publication date: April 10, 2008
    Applicant: Tower Semiconductor Ltd.
    Inventors: Evgeny Pikhay, Yakov Roizin, Alexey Heiman, Amos Fenigstein
  • Publication number: 20070224751
    Abstract: An IC includes both “volatile” CMOS transistors (FETs) and embedded non-volatile memory (NVM) cells, both including polysilicon gate structures, sidewall oxide layers, sidewall spacer structures, and source/drain regions. The sidewall spacers of both the NVM cells and the FETs are made up of a spacer material with local charge storage nodes that is capable of storing electrical charge (e.g., silicon-nitride with traps or oxide with silicon nanocrystals). The source/drain regions of the NVM cells omit lightly-doped drains (which are used in the CMOS FETs), and the NVM cells are formed with thinner sidewall oxide layers than the CMOS FETs to facilitate programming/erasing operations. A production method includes a modified CMOS process flow where the CMOS FET gate structures receive different source/drain diffusions and oxides than the NVM gate structures, but both receive substantially identical sidewall spacers, which are used as charge storage structures in the NVM cells.
    Type: Application
    Filed: May 24, 2007
    Publication date: September 27, 2007
    Applicant: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Amos Fenigstein
  • Publication number: 20070200054
    Abstract: A CMOS image sensor (CIS) device includes an array of pixels, each pixel including a sensing element (e.g., a photodiode) and access circuitry. To facilitate the passage of light to the photodiode, each pixel includes a via wave guide (VWG) defined in the metallization layer formed over the pixel's photodiode. The VWG includes an upper light concentrator having a curved (e.g., parabolic) surface extending from a relatively wide upper opening to a relatively small lower opening. The VWG also includes a lower section extending between the lower opening of the light concentrator and the associated photodiode. A mirror coating is optionally formed on the surface of the VWG. An optional light-guiding material and/or color filter materials are disposed inside the VWG. An optional microlens is formed over the VWG.
    Type: Application
    Filed: February 24, 2006
    Publication date: August 30, 2007
    Applicant: Tower Semiconductor Ltd.
    Inventors: Hai Reznik, Amos Fenigstein, Doron Amihood, David Cohen
  • Publication number: 20070200055
    Abstract: A CMOS image sensor (CIS) device includes an array of pixels, each pixel including a sensing element (e.g., a photodiode) and access circuitry. To facilitate the passage of light to the photodiode, each pixel includes a via wave guide (VWG) defined in the metallization layer formed over the pixel's photodiode. The VWG includes an upper light concentrator having a cone-like surface (e.g., having a tapered roundish or polygonal cross-section) extending from a relatively wide upper opening to a relatively small lower opening. The VWG also includes an optional lower section extending between the lower opening of the light concentrator and the associated photodiode. A mirror coating is optionally formed on the surface of the VWG. An optional light-guiding material and/or color filter materials are disposed inside the VWG. An optional microlens is formed over the VWG.
    Type: Application
    Filed: February 24, 2006
    Publication date: August 30, 2007
    Applicant: Tower Semiconductor Ltd.
    Inventors: Hai Reznik, Amos Fenigstein, Doron Amihood, David Cohen
  • Publication number: 20070166912
    Abstract: A capacitor for a single-poly floating gate device is fabricated on a semiconductor substrate along with low and high voltage transistors. Each transistor has a gate width greater than or equal to a minimum gate width of the associated process. A dielectric layer is formed over the substrate, and a patterned polysilicon structure is formed over the dielectric layer. The patterned polysilicon structure includes one or more narrow polysilicon lines, each having a width less than the minimum gate width. The LDD implants for low and high voltage transistors of the same conductivity type are allowed to enter the substrate, using the patterned polysilicon structure as a mask. A thermal drive-in cycle results in a continuous diffusion region that merges under the narrow polysilicon lines. Contacts formed adjacent to the narrow polysilicon lines and a metal-1 trace connected to the contacts may increase the resulting capacitance.
    Type: Application
    Filed: January 4, 2006
    Publication date: July 19, 2007
    Applicant: Tower Semiconductor Ltd.
    Inventors: Amos Fenigstein, Zohar Kuritsky, Asaf Lahav, Ira Naot, Yakov Roizin
  • Patent number: 7227234
    Abstract: An IC includes both “volatile” CMOS transistors (FETs) and embedded non-volatile memory (NVM) cells, both including polysilicon gate structures, sidewall oxide layers, sidewall spacer structures, and source/drain regions. The sidewall spacers of both the NVM cells and the FETs are made up of a spacer material with local charge storage nodes that is capable of storing electrical charge (e.g., silicon-nitride with traps or oxide with silicon nanocrystals). The source/drain regions of the NVM cells omit lightly-doped drains (which are used in the CMOS FETs), and the NVM cells are formed with thinner sidewall oxide layers than the CMOS FETs to facilitate programming/erasing operations. A production method includes a modified CMOS process flow where the CMOS FET gate structures receive different source/drain diffusions and oxides than the NVM gate structures, but both receive substantially identical sidewall spacers, which are used as charge storage structures in the NVM cells.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: June 5, 2007
    Assignee: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Amos Fenigstein