Patents by Inventor Amrinder Singh Nain

Amrinder Singh Nain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9902932
    Abstract: Provided herein are apparatus and systems for fabricating highly aligned arrays of polymeric fibers having isodiameters ranging from sub 50 nm to microns with lengths of several millimeters. The approach disclosed herein uses (e.g.) a micropipette to deliver polymeric solution which is collected in the form of aligned fibers on a rotating and linearly translating substrate. The methods deposit polymeric fibers on spherical surfaces and gapped surfaces with precise control, thus heralding new opportunities for a variety of applications employing polymeric fibers. The design workspace for depositing fibers disclosed herein is dependent upon processing parameters of rotational/linear translational speeds and material properties of solution rheologies. Techniques for fabrication of multilayer fiber arrays, for fabrication of cell growth scaffolds and for attachment of particles to the fiber arrays are also disclosed.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: February 27, 2018
    Assignee: Carnegie Mellon University
    Inventor: Amrinder Singh Nain
  • Patent number: 9753023
    Abstract: Methods and systems are provided for measuring single and multi-cell inside-out and/or outside-in forces on a nanofiber grid. Single and multi-cells are deposited on, or migrate onto the nanofiber grid where the cell or cells are in contact with at least one fiber of the nanofiber grid and forces generated by the cells are observed and measured using deflection sensing methods. Furthermore, analyte-testing platforms using the nanofiber grid are described herein. Also provided are methods and apparatus including automated analyte-testing platforms using the nanofiber grid.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: September 5, 2017
    Assignee: Carnegie Mellon University
    Inventors: Amrinder Singh Nain, Bahareh Behkam
  • Publication number: 20160202289
    Abstract: Methods and systems are provided for measuring single and multi-cell inside-out and/or outside-in forces on a nanofiber grid. Single and multi-cells are deposited on, or migrate onto the nanofiber grid where the cell or cells are in contact with at least one fiber of the nanofiber grid and forces generated by the cells are observed and measured using deflection sensing methods. Furthermore, analyte-testing platforms using the nanofiber grid are described herein. Also provided are methods and apparatus including automated analyte-testing platforms using the nanofiber grid.
    Type: Application
    Filed: January 7, 2016
    Publication date: July 14, 2016
    Inventors: Amrinder Singh Nain, Bahareh Behkam
  • Publication number: 20150252322
    Abstract: Provided herein are apparatus and systems for fabricating highly aligned arrays of polymeric fibers having isodiameters ranging from sub 50 nm to microns with lengths of several millimeters. The approach disclosed herein uses (e.g.) a micropipette to deliver polymeric solution which is collected in the form of aligned fibers on a rotating and linearly translating substrate. The methods deposit polymeric fibers on spherical surfaces and gapped surfaces with precise control, thus heralding new opportunities for a variety of applications employing polymeric fibers. The design workspace for depositing fibers disclosed herein is dependent upon processing parameters of rotational/linear translational speeds and material properties of solution rheologies. Techniques for fabrication of multilayer fiber arrays, for fabrication of cell growth scaffolds and for attachment of particles to the fiber arrays are also disclosed.
    Type: Application
    Filed: April 10, 2015
    Publication date: September 10, 2015
    Inventor: Amrinder Singh Nain
  • Patent number: 9029149
    Abstract: Provided herein are apparatus and systems for fabricating highly aligned arrays of polymeric fibers having isodiameters ranging from sub 50 nm to microns with lengths of several millimeters. The approach disclosed herein uses (e.g.) a micropipette to deliver polymeric solution which is collected in the form of aligned fibers on a rotating and linearly translating substrate. The methods deposit polymeric fibers on spherical surfaces and gapped surfaces with precise control, thus heralding new opportunities for a variety of applications employing polymeric fibers. The design workspace for depositing fibers disclosed herein is dependent upon processing parameters of rotational/linear translational speeds and material properties of solution rheologies. Techniques for fabrication of multilayer fiber arrays, for fabrication of cell growth scaffolds and for attachment of particles to the fiber arrays are also disclosed.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: May 12, 2015
    Assignee: Carnegie Mellon University
    Inventor: Amrinder Singh Nain
  • Publication number: 20100028999
    Abstract: Provided herein are apparatus and systems for fabricating highly aligned arrays of polymeric fibers having isodiameters ranging from sub 50 nm to microns with lengths of several millimeters. The approach disclosed herein uses (e.g.) a micropipette to deliver polymeric solution which is collected in the form of aligned fibers on a rotating and linearly translating substrate. The methods deposit polymeric fibers on spherical surfaces and gapped surfaces with precise control, thus heralding new opportunities for a variety of applications employing polymeric fibers. The design workspace for depositing fibers disclosed herein is dependent upon processing parameters of rotational/linear translational speeds and material properties of solution rheologies. Techniques for fabrication of multilayer fiber arrays, for fabrication of cell growth scaffolds and for attachment of particles to the fiber arrays are also disclosed.
    Type: Application
    Filed: July 30, 2009
    Publication date: February 4, 2010
    Inventor: Amrinder Singh Nain