Patents by Inventor Anant Achyut Setlur

Anant Achyut Setlur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10072206
    Abstract: Processes for preparing color stable red-emitting phosphors include contacting a complex fluoride phosphor of formula I with a first fluorine-containing oxidizing agent in gaseous form at a first temperature ranging from 200° C. to 700° C. to form a first product phosphor, contacting the first product phosphor in particulate form with a solution of a compound of formula II in aqueous hydrofluoric acid to form a treated phosphor, and contacting the treated phosphor with a second fluorine-containing oxidizing agent in gaseous form at a second temperature <225° C., AxMFy:MN4+??I AxMFy??II wherein A is independently at each occurrence Li, Na, K, Rb, Cs or a combination thereof, M is independently at each occurrence Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof, x is absolute value of the charge of the MFy ion; and y is 5, 6 or 7.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: September 11, 2018
    Assignee: General Electric Company
    Inventors: James Edward Murphy, Fangming Du, Anant Achyut Setlur
  • Publication number: 20180155618
    Abstract: Synthesizing a color stable Mn4+ doped phosphor by contacting a gaseous fluorine-containing oxidizing agent with a precursor of: AaBbCcDdXx:Mn4+; AaiBbiCciDdXxYd:Mn4+; A13G2?m?nMnmMgnLi3F12Op; or AZF4:Mn4+. Where A is Li, Na, K, Rb, Cs, or a combination; B is Be, Mg, Ca, Sr, Ba, or a combination; C is Sc, Y, B, Al, Ga, In, Tl, or a combination; D is Ti, Zr, Hf, Rf, Si, Ge, Sn, Pb, or a combination; X is F or a combination of F and one of Br, Cl, and I; Y is O, or a combination of O and one of S and Se; A1 is Na or K, or a combination; G is Al, B, Sc, Fe, Cr, Ti, In, or a combination; Z is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y, In, or a combination.
    Type: Application
    Filed: May 18, 2015
    Publication date: June 7, 2018
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Srinivas Prasad SISTA, Anant Achyut SETLUR
  • Publication number: 20180134956
    Abstract: A process for treating a luminescent halogen-containing material includes contacting the luminescent halogen-containing material with an atmosphere comprising a halogen-containing oxidizing agent for a period of at least about two hours. The luminescent halogen-containing material has a composition other than (i) Ax[MFy]:Mn4+, where A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; and y is 5, 6 or 7; (ii) Zn2[MF7]:Mn4+, where M is selected from Al, Ga, In, and combinations thereof; (iii) E[MF6]:Mn4+, where E is selected from Mg, Ca, Sr, Ba, Zn, and combinations thereof; and where M is selected from Ge, Si, Sn, Ti, Zr, and combinations thereof; or (iv) Ba0.65Zr0.35F2.
    Type: Application
    Filed: May 18, 2015
    Publication date: May 17, 2018
    Inventors: James Edward MURPHY, Anant Achyut SETLUR
  • Patent number: 9964455
    Abstract: A method of monitoring a surface temperature of a hot gas path component includes directing an excitation beam having an excitation wavelength at a layer of a sensor material composition deposited on a hot gas path component to induce a fluorescent radiation. The method includes measuring fluorescent radiation emitted by the sensor material composition. The fluorescent radiation includes at least a first intensity at a first wavelength and a second intensity at a second wavelength. The surface temperature of the hot gas path component is determined based on a ratio of the first intensity at the first wavelength and the second intensity at the second wavelength of the fluorescent radiation emitted by the sensor material composition.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: May 8, 2018
    Assignee: General Electric Company
    Inventors: Mark Allen Cheverton, Anant Achyut Setlur, Victor Petrovich Ostroverkhov, Guanghua Wang, James Anthony Brewer, Venkat Subramaniam Venkataramani
  • Patent number: 9938457
    Abstract: Methods for fabricating coated semiconductor elements are presented. The methods include the steps of combining a phosphor of formula I and a polymer binder to form a composite material, providing a semiconductor wafer including IniGajAlkN, wherein 0?i; 0?j; 0?k, and a sum of i, j and k is equal to 1, coating the composite material on a surface of the semiconductor wafer to form a coated semiconductor wafer, and dicing the coated semiconductor wafer using a cutting fluid apparatus to form one or more coated semiconductor elements. A cutting fluid of the cutting fluid apparatus includes a C1-C20 alcohol, a C1-C20 ketone, a C1-C20 acetate compound, acetic acid, oleic acid, carboxylic acid, a source of A, silicic acid, or a combination thereof.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: April 10, 2018
    Assignee: General Electric Company
    Inventors: Digamber Gurudas Porob, James Edward Murphy, Florencio Garcia, Srinivas Prasad Sista, Anant Achyut Setlur, William Winder Beers, Fangming Du
  • Patent number: 9929319
    Abstract: A process for fabricating a LED lighting apparatus includes disposing a composite coating on a surface of a LED chip. The composite coating comprises a first composite layer having a manganese doped phosphor of formula I and a first binder, and a second composite layer comprising a second phosphor composition and a second binder. The first binder, the second binder or both include a poly(meth)acrylate. Ax[MFy]:Mn4+??(I) wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: March 27, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Anant Achyut Setlur, Stanton Earl Weaver, Thomas Bert Gorczyca, Ashfaqul Islam Chowdhury, James Edward Murphy, Florencio Garcia
  • Publication number: 20180079955
    Abstract: Methods for fabricating coated semiconductor elements are presented. The methods include the steps of combining a phosphor of formula I and a polymer binder to form a composite material, providing a semiconductor wafer including IniGajAlkN, wherein 0?i; 0?j; 0?k, and a sum of i, j and k is equal to 1, coating the composite material on a surface of the semiconductor wafer to form a coated semiconductor wafer, and dicing the coated semiconductor wafer using a cutting fluid apparatus to form one or more coated semiconductor elements. A cutting fluid of the cutting fluid apparatus includes a C1-C20 alcohol, a C1-C20 ketone, a C1-C20 acetate compound, acetic acid, oleic acid, carboxylic acid, a source of A, silicic acid, or a combination thereof.
    Type: Application
    Filed: September 20, 2016
    Publication date: March 22, 2018
    Inventors: Digamber Gurudas Porob, James Edward Murphy, Florencio Garcia, Srinivas Prasad Sista, Anant Achyut Setlur, William Winder Beers, Fangming Du
  • Patent number: 9868898
    Abstract: Processes for preparing color stable Mn4+ doped phosphors include contacting a phosphor of formula I with a fluorine-containing oxidizing agent in gaseous form at temperature ?225° C. to form the color stable Mn4+ doped phosphor A x ? MF y ? : ? Mn 4 + I wherein A is independently at each occurrence Li, Na, K, Rb, Cs, or a combination thereof; M is independently at each occurrence Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the MFy ion; and y is 5, 6 or 7. In another aspect, the processes include contacting a phosphor of formula I at an elevated temperature with an oxidizing agent comprising a C1-C4 fluorocarbon, to form the color stable Mn4+ doped phosphor.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: January 16, 2018
    Assignee: General Electric Company
    Inventors: James Edward Murphy, Fangming Du, Anant Achyut Setlur
  • Publication number: 20180002598
    Abstract: Processes for preparing color stable red-emitting phosphors include contacting a complex fluoride phosphor of formula I, AxMFy:Mn4+?? I with a first fluorine-containing oxidizing agent in gaseous form at a first temperature ranging from about 200° C. to about 700° C., to form a first product phosphor; contacting the first product phosphor in particulate form with a solution of a compound of formula II in aqueous hydrofluoric acid, AxMFy?? II to form a treated phosphor; and contacting the treated phosphor with a second fluorine-containing oxidizing agent in gaseous form at a second temperature of less than 225° C.; wherein A is independently at each occurrence Li, Na, K, Rb, Cs, or a combination thereof; M is independently at each occurrence Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the MFy ion; and y is 5, 6 or 7.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: James Edward Murphy, Fangming Du, Anant Achyut Setlur
  • Patent number: 9698314
    Abstract: A process for synthesizing a color stable Mn4+ doped phosphor includes contacting a precursor of formula I, in gaseous form at an elevated temperature with a fluorine-containing oxidizing agent to form the color stable Mn4+ doped phosphor Ax[MFy]:Mn4+??I wherein A is Li, Na, K, Rb, Cs, NR4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; and y is 5, 6 or 7.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: July 4, 2017
    Assignee: General Electric Company
    Inventors: James Edward Murphy, Anant Achyut Setlur, Florencio Garcia, Robert Joseph Lyons, Ashfaqul Islam Chowdhury, Nagaveni Karkada, Prasanth Kumar Nammalwar
  • Publication number: 20170145304
    Abstract: A lighting apparatus includes a semiconductor light source in direct contact with a polymer composite comprising a color stable Mn4+ doped phosphor, wherein the lighting apparatus has a color shift of 1.5 MacAdam ellipses after operating for at least 2,000 hour at a LED current density greater than 2 A/cm2, a LED wall-plug efficiency greater than 40%, and a board temperature greater than 25° C.
    Type: Application
    Filed: January 10, 2017
    Publication date: May 25, 2017
    Inventors: James Edward Murphy, Anant Achyut Setlur, Florencio Garcia, Robert Joseph Lyons, Ashfaqul Islam Chowdhury, Nagaveni Karkada, Prasanth Kumar Nammalwar, William Winder Beers
  • Patent number: 9611237
    Abstract: A phosphor material is presented that includes a blend of a first phosphor, a second phosphor and a third phosphor. The first phosphor includes a composition having a general formula of RE2?yM1+yA2?yScySin?wGewO12+?:Ce3+ wherein RE is selected from a lanthanide ion or Y3+, where M is selected from Mg, Ca, Sr or Ba, A is selected from Mg or Zn and where 0?y?2, 2.5?n?3.5, 0?w?1, and ?1.5???1.5. The second phosphor includes a complex fluoride doped with manganese (Mn4+), and the third phosphor include a phosphor composition having an emission peak in a range from about 520 nanometers to about 680 nanometers. A lighting apparatus including such a phosphor material is also presented. The light apparatus includes a light source in addition to the phosphor material.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: April 4, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Prasanth Kumar Nammalwar, Digamber Gurudas Porob, Anant Achyut Setlur, Satya Kishore Manepalli
  • Patent number: 9580648
    Abstract: A color stable Mn4+ doped phosphor of formula I, Ax[MFy]:Mn4+??I wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and wherein % intensity loss of the phosphor after exposure to light flux of at least 80 w/cm2 at a temperature of at least 50° C. for at least 21 hours is ?4%.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: February 28, 2017
    Assignee: General Electric Company
    Inventors: James Edward Murphy, Anant Achyut Setlur, Florencio Garcia, Robert Joseph Lyons, Ashfaqul Islam Chowdhury, Nagaveni Karkada, Prasanth Kumar Nammalwar
  • Patent number: 9567516
    Abstract: A process for synthesizing a manganese (Mn4+) doped phosphor includes milling particles of the a phosphor precursor of formula I, and contacting the milled particles with a fluorine-containing oxidizing agent at an elevated temperature Ax[MFy]:Mn4+??(I) wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: February 14, 2017
    Assignee: General Electric Company
    Inventors: James Edward Murphy, Anant Achyut Setlur, Florencio Garcia, Srinivas Prasad Sista
  • Patent number: 9546318
    Abstract: A process for preparing a Mn4+ doped phosphor of formula I Ax[MFy]:Mn+4??I includes contacting a mixture of a compound of formula Ax[MFy], a compound of formula AX, and a Mn+n source comprising a fluoromanganese compound, with a fluorine-containing oxidizing agent in gaseous form, at an elevated temperature, to form the Mn4+ doped phosphor; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; X is F, Cl, Br, I, HF2, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and n is 2, 3, or 4.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: January 17, 2017
    Assignee: General Electric Company
    Inventors: James Edward Murphy, Robert Joseph Lyons, Anant Achyut Setlur, Jr.
  • Publication number: 20160376499
    Abstract: A phosphor composition is derived from combining K2SiF6:Mn4+ in solid form with a saturated solution of a manganese-free complex fluoride including a composition of formula I:A3[MF6], where A is selected from Na, K, Rb, and combinations thereof and M is selected from Al, Ga, In, Sc, Y, Gd, and combinations thereof. The composition of formula I:A3[MF6] has a water solubility lower than a water solubility of K2SiF6. A lighting apparatus including the phosphor composition is also provided.
    Type: Application
    Filed: December 16, 2014
    Publication date: December 29, 2016
    Inventors: Anant Achyut Setlur, Robert Joseph Lyons, Prasanth Kumar Nammalwar, James Edward Murphy, Florencio Garcia, Ravikumar Hanumantha
  • Patent number: 9512356
    Abstract: A process for preparing a Mn4+ doped phosphor of formula I Ax[MFy]:Mn+4?? I includes combining in an acidic solution, an A+ cation, an anion of formula MFy, and a Mnn+ source comprising a fluoromanganese compound, precipitating a Mnn+ containing phosphor precursor from the acidic solution, and contacting the Mnn+ containing phosphor precursor with a fluorine-containing oxidizing agent in gaseous form, at an elevated temperature, to form the Mn4+ doped phosphor; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and n is 2 or 3.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: December 6, 2016
    Assignee: General Electric Company
    Inventors: Robert Joseph Lyons, James Edward Murphy, Anant Achyut Setlur, Jr.
  • Publication number: 20160312114
    Abstract: Processes for preparing color stable Mn4+ doped phosphors include contacting a phosphor of formula I with a fluorine-containing oxidizing agent in gaseous form at temperature ?225° C. to form the color stable Mn4+ doped phosphor A x ? MF y ? : ? Mn 4 + I wherein A is independently at each occurrence Li, Na, K, Rb, Cs, or a combination thereof; M is independently at each occurrence Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the MFy ion; and y is 5, 6 or 7. In another aspect, the processes include contacting a phosphor of formula I at an elevated temperature with an oxidizing agent comprising a C1-C4 fluorocarbon, to form the color stable Mn4+ doped phosphor.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Inventors: James Edward Murphy, Fangming Du, Anant Achyut Setlur
  • Patent number: 9395301
    Abstract: A method of monitoring a surface temperature of an environmental barrier coating (EBC) of a hot gas component includes directing an excitation beam having a first wavelength at a layer of a temperature indicator formed on the hot gas component. The method also includes measuring a fluorescent radiation emitted by the temperature indicator. The fluorescent radiation has a second wavelength and an intensity. In addition, the method includes determining a surface temperature of the EBC based on the intensity of the second wavelength of the fluorescent radiation.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: July 19, 2016
    Assignee: General Electric Company
    Inventors: Mark Allen Cheverton, Anant Achyut Setlur, Victor Petrovich Ostroverkhov, Guanghua Wang, Joseph John Shiang
  • Patent number: 9385282
    Abstract: A process for synthesizing a Mn4+ doped phosphor includes contacting a precursor of formula I, Ax(M1?z,Mnz)Fy??I at an elevated temperature with a fluorine-containing oxidizing agent in gaseous form to form the Mn4+ doped phosphor; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and 0.03?z?0.10.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: July 5, 2016
    Assignee: General Electric Company
    Inventors: Anant Achyut Setlur, James Edward Murphy, Florencio Garcia, Ashfaqul Islam Chowdhury, Srinivas Prasad Sista