Patents by Inventor Anastasios John Hart

Anastasios John Hart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190060997
    Abstract: Additive fabrication systems generally use support structures to expand the available range of features and geometries in fabricated objects. For example, when a vertical shelf or cantilever extends from an object, a supplemental support structure may be required to provide a surface for fabrication thereon. This process may become more difficult when, e.g., a part will be subjected to downstream processing steps such as debinding or sintering that impose different design rules. To address these challenges and provide a greater range of flexibility and processing speed, it may be useful in certain circumstances to independently fabricate the object and support structures, and then assemble these structures into a composite item for debinding and sintering. This approach also advantageously facilitates various techniques for spraying, dipping, or otherwise applying a release layer between the support structure and the part so that these separate items do not become fused together during sintering.
    Type: Application
    Filed: October 25, 2018
    Publication date: February 28, 2019
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Ricardo Chin, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20190001412
    Abstract: A variety of additive manufacturing techniques can be adapted to fabricate a substantially net shape object from a computerized model using materials that can be debound and sintered into a fully dense metallic part or the like. However, during sintering, the net shape will shrink as binder escapes and the base material fuses into a dense final part. If the foundation beneath the object does not shrink in a corresponding fashion, the resulting stresses throughout the object can lead to fracturing, warping, or other physical damage to the object resulting in a failed fabrication. To address this issue, a variety of techniques are disclosed for substrates and build plates that contract in a manner complementary to the object during debinding and sintering.
    Type: Application
    Filed: September 5, 2018
    Publication date: January 3, 2019
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Ricardo Chin, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20180361423
    Abstract: A particle can be discretely ejected from a orifice.
    Type: Application
    Filed: April 9, 2018
    Publication date: December 20, 2018
    Inventors: Anastasios John HART, Justin Douglas BEROZ, Homayoon MAGHSOODI
  • Patent number: 10138120
    Abstract: Nanostructured assemblies are manufactured by condensing an evaporated wetting agent onto a nanostructure array formed from a plurality of generally aligned carbon nanotubes or other nanostructures. The condensed wetting agent draws the individual nanostructures together to form various geometries of nanostructured assemblies based on various parameters including process variables and the starting shape and dimensional features of the nanostructure array. Various simple and complex geometries can be achieved in this manner, including geometries that are curved, bent, or twisted. Adjacent nanostructure arrays of the same or different starting geometries can be shaped into compound or interrelating structures. Additional process steps such as plasma etching, coating and others can be used to control the shaping and structural attributes of the nanostructured assemblies. A method of making a molded replica of a shaped nanostructure array is also disclosed.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: November 27, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Anastasios John Hart, Sameh Tawfick, Michael DeVolder, Davor Copic
  • Patent number: 10137444
    Abstract: Nanoliter pipette assembly. The assembly includes a housing containing a working fluid in a working fluid chamber therein and includes a moveable piston within the housing, the piston moveable by a linear actuation mechanism for contact with the working fluid. A tip portion is provided that includes a diaphragm deformable to engage an inner portion of the tip. It is preferred that the diaphragm have a projecting three-dimensional structure for direct contact with a liquid.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: November 27, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Justin Beroz, Jacob Rothman, Adrian Samsel, Anastasios John Hart
  • Publication number: 20180318933
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. A former extending from a nozzle of the printer supplements a layer fusion process by applying a normal force on new material as it is deposited to form the object. The former may use a variety of techniques such as heat and rolling to improve physical bonding between layers.
    Type: Application
    Filed: June 29, 2018
    Publication date: November 8, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Anastasios John Hart, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Matthew David Verminski, Peter Alfons Schmitt, Emanuel Michael Sachs, Ricardo Chin
  • Publication number: 20180318925
    Abstract: A support structure is fabricated below a printed object to form a structure that prevents or minimizes a drag on a floor while the object shrinks during sintering.
    Type: Application
    Filed: June 28, 2018
    Publication date: November 8, 2018
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20180318932
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. The shape of an extrusion nozzle may be varied during extrusion to control, e.g., an amount of build material deposited, a shape of extrudate exiting the nozzle, a feature resolution, and the like.
    Type: Application
    Filed: June 29, 2018
    Publication date: November 8, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Anastasios John Hart, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Matthew David Verminski, Peter Alfons Schmitt, Emanuel Michael Sachs, Ricardo Chin
  • Patent number: 10118426
    Abstract: A nanoporous stamp for printing a variety of materials is disclosed. The nanoporous stamp may include a substrate and an array of carbon nanotubes disposed on and attached to the substrate. The array of carbon nanotubes can have an etched top surface and a wettable, nanoporous structure, and may include a coating thereon. The nanoporous stamp can be used in a variety of printing applications, and can print, among other things, colloidal and non-colloidal inks on a variety of substrates with a high degree of accuracy and fidelity.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: November 6, 2018
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Anastasios John Hart, Sanha Kim, Hossein Sojoudi, Karen K. Gleason
  • Publication number: 20180311738
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. The shape of an extrusion nozzle may be varied during extrusion to control, e.g., an amount of build material deposited, a shape of extrudate exiting the nozzle, a feature resolution, and the like.
    Type: Application
    Filed: June 29, 2018
    Publication date: November 1, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Anastasios John Hart, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Matthew David Verminski, Peter Alfons Schmitt, Emanuel Michael Sachs, Ricardo Chin
  • Patent number: 10112836
    Abstract: A nanosynthesis apparatus includes an outer tube and an inner tube with surfaces that oppose each other across a gap as part of a reaction chamber. A deposition fluid flows along the reaction chamber to grow nanostructures such as graphene or carbon nanotubes on a substrate in the reaction chamber. The reaction chamber may have an annular cross-section, and the growth substrate may wrap around the inner tube in a helical manner. This configuration can allow a flexible film substrate to travel through the reaction chamber along a path that is significantly longer than the length of the reaction chamber while maintaining a uniform gap between the substrate and the reaction chamber wall, which can facilitate a uniform temperature distribution and fluid composition across the width of the substrate.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: October 30, 2018
    Assignee: The Regents of The University of Michigan
    Inventors: Anastasios John Hart, Erik Polsen
  • Publication number: 20180304358
    Abstract: The devices, systems, and methods of the present disclosure are directed to dispensing powder for rapid and accurate layer-by-layer fabrication of three-dimensional objects formed through binder jetting. More specifically, a powder may be dispensed from a hopper movable over a volume defined by a powder box to facilitate, for example, rapidly delivering powder in front of a spreader movable across the volume to spread the powder into a layer. The hopper may include a plurality of dispensing rollers along a dispensing region of the hopper. The dispensing rollers may be rotatable relative to one another to control dispensing the powder from the hopper to an area in front of the spreader, reducing wasted motion associated with moving a spreader to retrieve powder from a stationary powder supply and reducing the likelihood of inadvertently delivering powder from the hopper to unintended areas.
    Type: Application
    Filed: April 20, 2018
    Publication date: October 25, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Paul A. Hoisington, Emanuel Michael Sachs, Anastasios John Hart, Keith Vaillancourt, Steven Garrant, Brett Schuster, George Hudelson
  • Publication number: 20180304363
    Abstract: A support structure is fabricated below a printed object to form a structure that prevents or minimizes a drag on a floor while the object shrinks during sintering.
    Type: Application
    Filed: June 28, 2018
    Publication date: October 25, 2018
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20180304540
    Abstract: Complexity of a geometry of a desired (i.e., target) three-dimensional (3D) object being produced by an additive manufacturing system, as well as atypical behavior of the processes employed by such a system, pose challenges for producing a final version of the desired 3D object with fidelity relative to the desired object. An example embodiment enables such challenges to be overcome as a function of feedback to enable the final version to be produced with fidelity. The feedback may be at least one value that is associated with at least one characteristic of a printed object following processing of the printed object. Such feedback may be obtained as part of a calibration process of the 3D printing system or as part of an operational process of the 3D printing system.
    Type: Application
    Filed: April 23, 2018
    Publication date: October 25, 2018
    Inventors: Jay Tobia, Nihan Tuncer, Aaron Preston, Ricardo Fulop, Michael A. Gibson, Richard Remo Fontana, Anastasios John Hart
  • Publication number: 20180304370
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. A former extending from a nozzle of the printer supplements a layer fusion process by applying a normal force on new material as it is deposited to form the object. The former may use a variety of techniques such as heat and rolling to improve physical bonding between layers.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 25, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Anastasios John Hart, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Matthew David Verminski, Peter Alfons Schmitt, Emanuel Michael Sachs, Ricardo Chin
  • Publication number: 20180304360
    Abstract: A superstructure is fabricated around an object, but physically isolated from the object, with a shape that facilitates robotic handling of the superstructure, along with removal of powder from the object, after a three-dimensional printing process such as binder jetting.
    Type: Application
    Filed: April 24, 2018
    Publication date: October 25, 2018
    Inventors: Richard Remo Fontana, Anastasios John Hart, Michael Andrew Gibson
  • Publication number: 20180304364
    Abstract: A support structure is formed from a support material below a printed object that shrinks similarly to a build material of the printed object during processing in a furnace.
    Type: Application
    Filed: June 28, 2018
    Publication date: October 25, 2018
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20180304367
    Abstract: The devices, systems, and methods of the present disclosure are directed to spreading powder to facilitate accurate layer-by-layer fabrication of three-dimensional objects formed through binder jetting. More specifically, a spreader may be moved across a volume defined by a powder box to spread the powder in a layer. As the spreader is moved across the volume, the spreader may vibrate to pack the powder in the volume. By applying this vibration to the powder on a layer-by-layer basis, the resulting three-dimensional object formed through the binder jetting process may have improved density. In turn, such improved density may be useful for forming the three-dimensional objects into finished parts meeting target density standards, which may be particularly useful in the fabrication of metal parts. Further, or instead, applying vibration to the powder may reduce the likelihood of layer-to-layer variations in the three-dimensional object, thus reducing the likelihood of defects in finished parts.
    Type: Application
    Filed: April 20, 2018
    Publication date: October 25, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Paul A. Hoisington, Emanuel Michael Sachs, Michael Andrew Gibson, Anastasios John Hart, Keith Vaillancourt, Steven Garrant, Brett Schuster
  • Publication number: 20180304357
    Abstract: The devices, systems, and methods of the present disclosure are directed to thermal energy delivery to facilitate rapid layer-by-layer fabrication of three-dimensional objects formed through binder jetting. More specifically, a powder may be spread to form a layer along a volume defined by a powder box, a binder may be deposited along the layer to form a layer of a three-dimensional object, and the direction of spreading the layer and depositing the binder may be in a first direction and in a second direction, different from the first direction, thus facilitating rapid formation of the three-dimensional object. Thermal energy may be delivered to each layer in the first and second directions to dry or otherwise change the binder and/or the powder to reduce the likelihood of distorting the binder in a given layer as a subsequent layer is rapidly formed over the given layer.
    Type: Application
    Filed: April 20, 2018
    Publication date: October 25, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Paul A. Hoisington, Emanuel Michael Sachs, Anastasios John Hart, Keith Vaillancourt, Steven Garrant, Brett Schuster
  • Publication number: 20180304369
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. The shape of an extrusion nozzle may be varied during extrusion to control, e.g., an amount of build material deposited, a shape of extrudate exiting the nozzle, a feature resolution, and the like.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 25, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Anastasios John Hart, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Matthew David Verminski, Peter Alfons Schmitt, Emanuel Michael Sachs, Ricardo Chin