Patents by Inventor Anatoli Ledenev

Anatoli Ledenev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10714637
    Abstract: The inventive technology, in certain embodiments, may be generally described as a solar power generation system with a converter, which may potentially include two or more sub-converters, established intermediately of one or more strings of solar panels. Particular embodiments may involve sweet spot operation in order to achieve improvements in efficiency, and bucking of open circuit voltages by the converter in order that more panels may be placed on an individual string or substring, reducing the number of strings required for a given design, and achieving overall system and array manufacture savings.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: July 14, 2020
    Assignee: AMPT, LLC
    Inventors: Anatoli Ledenev, Robert M. Porter
  • Patent number: 10608437
    Abstract: Different systems to achieve solar power conversion are provided in at least three different general aspects, with circuitry that can be used to harvest maximum power from a solar source or strings of panels for DC or AC use, perhaps for transfer to a power grid three aspects can exist perhaps independently and relate to: 1) electrical power conversion in a multimodal manner, 2) alternating between differing processes such as by an alternative mode photovoltaic power converter functionality control, and 3) systems that can achieve efficiencies in conversion that are extraordinarily high compared to traditional through substantially power isomorphic photovoltaic DC-DC power conversion capability that can achieve 99.2% efficiency or even only wire transmission losses. Switchmode impedance conversion circuits may have pairs of photovoltaic power series switch elements and pairs of photovoltaic power shunt switch elements.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: March 31, 2020
    Assignee: AMPT, LLC
    Inventors: Anatoli Ledenev, Robert M. Porter
  • Publication number: 20190296555
    Abstract: Renewable electrical energy is provided with aspects and circuitry that can harvest maximum power from an alternative electrical energy source (1) such as a string of solar panels (11) for a power grid (10). Aspects include: i) controlling electrical power creation from photovoltaic DC-AC inverter (5), ii) operating photovoltaic DC-AC inverter (5) at maximal efficiency even when MPP would not be, iii) protecting DC-AC inverter (5) so input can vary over a range of insolation and temperature, and iv) providing dynamically reactive capability to react and assure operation, to permit differing components, to achieve code compliant dynamically reactive photovoltaic power control circuitry (41). With previously explained converters, inverter control circuitry (38) or photovoltaic power converter functionality control circuitry (8) configured as inverter sweet spot converter control circuitry (46) can achieve extraordinary efficiencies with substantially power isomorphic photovoltaic capability at 99.
    Type: Application
    Filed: June 12, 2019
    Publication date: September 26, 2019
    Inventors: Robert Porter, Anatoli Ledenev
  • Publication number: 20190296556
    Abstract: Methods and apparatus may provide for the adaptive operation of a solar power system (3). Solar energy sources (1) and photovoltaic DC-DC power converters (2) may be interconnected in serial, parallel, or combined arrangements. DC photovoltaic power conversion may be accomplished utilizing dynamically adjustable voltage output limits (8) of photovoltaic DC-DC power converters (2). A photovoltaic DC-DC power converter (2) may include at least one external state data interface (7) receptive to at least one external state parameter of a solar power system (3). A dynamically adjustable voltage output limit control (12) may be used to relationally set a dynamically adjustable voltage output limit (8) of a photovoltaic DC-DC power converter (2). Dynamically adjusting voltage output limits (8) may be done in relation to external state parameter information to achieve desired system results.
    Type: Application
    Filed: June 13, 2019
    Publication date: September 26, 2019
    Inventors: Robert M. Porter, Anatoli Ledenev
  • Patent number: 10326282
    Abstract: Methods and apparatus may provide for the adaptive operation of a solar power system (3). Solar energy sources (1) and photovoltaic DC-DC power converters (2) may be interconnected in serial, parallel, or combined arrangements. DC photovoltaic power conversion may be accomplished utilizing dynamically adjustable voltage output limits (8) of photovoltaic DC-DC power converters (2). A photovoltaic DC-DC power converter (2) may include at least one external state data interface (7) receptive to at least one external state parameter of a solar power system (3). A dynamically adjustable voltage output limit control (12) may be used to relationally set a dynamically adjustable voltage output limit (8) of a photovoltaic DC-DC power converter (2). Dynamically adjusting voltage output limits (8) may be done in relation to external state parameter information to achieve desired system results.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: June 18, 2019
    Assignee: AMPT, LLC
    Inventors: Robert M. Porter, Anatoli Ledenev
  • Patent number: 10326283
    Abstract: Renewable electrical energy is provided with aspects and circuitry that can harvest maximum power from an alternative electrical energy source (1) such as a string of solar panels (11) for a power grid (10). Aspects include: i) controlling electrical power creation from photovoltaic DC-AC inverter (5), ii) operating photovoltaic DC-AC inverter (5) at maximal efficiency even when MPP would not be, iii) protecting DC-AC inverter (5) so input can vary over a range of insolation and temperature, and iv) providing dynamically reactive capability to react and assure operation, to permit differing components, to achieve code compliant dynamically reactive photovoltaic power control circuitry (41). With previously explained converters, inverter control circuitry (38) or photovoltaic power converter functionality control circuitry (8) configured as inverter sweet spot converter control circuitry (46) can achieve extraordinary efficiencies with substantially power isomorphic photovoltaic capability at 99.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: June 18, 2019
    Assignee: AMPT, LLC
    Inventors: Robert M. Porter, Anatoli Ledenev
  • Publication number: 20190131794
    Abstract: A high efficiency solar power system combining photovoltaic sources of power (1) can be converted by a base phase DC-DC photovoltaic converter (6) and an altered phase DC-DC photovoltaic converter (8) that have outputs combined through low energy storage combiner circuitry (9). The converters can be synchronously controlled through a synchronous phase control (11) that synchronously operates switches to provide a conversion combined photovoltaic DC output (10). Converters can be provided for individual source conversion or phased operational modes, the latter presenting a combined low photovoltaic energy storage DC-DC photovoltaic converter (15) at string or individual panel levels.
    Type: Application
    Filed: October 26, 2018
    Publication date: May 2, 2019
    Inventor: Anatoli Ledenev
  • Publication number: 20180374965
    Abstract: The inventive technology, in certain embodiments, may be generally described as a solar power generation system with a converter, which may potentially include two or more sub-converters, established intermediately of one or more strings of solar panels. Particular embodiments may involve sweet spot operation in order to achieve improvements in efficiency, and bucking of open circuit voltages by the converter in order that more panels may be placed on an individual string or substring, reducing the number of strings required for a given design, and achieving overall system and array manufacture savings.
    Type: Application
    Filed: July 5, 2018
    Publication date: December 27, 2018
    Inventors: Anatoli Ledenev, Robert M. Porter
  • Patent number: 10116140
    Abstract: A high efficiency solar power system combining photovoltaic sources of power (1) can be converted by a base phase DC-DC photovoltaic converter (6) and an altered phase DC-DC photovoltaic converter (8) that have outputs combined through low energy storage combiner circuitry (9). The converters can be synchronously controlled through a synchronous phase control (11) that synchronously operates switches to provide a conversion combined photovoltaic DC output (10). Converters can be provided for individual source conversion or phased operational modes, the latter presenting a combined low photovoltaic energy storage DC-DC photovoltaic converter (15) at string or individual panel levels.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: October 30, 2018
    Assignee: AMPT, LLC
    Inventor: Anatoli Ledenev
  • Patent number: 10032939
    Abstract: The inventive technology, in certain embodiments, may be generally described as a solar power generation system with a converter, which may potentially include two or more sub-converters, established intermediately of one or more strings of solar panels. Particular embodiments may involve sweet spot operation in order to achieve improvements in efficiency, and bucking of open circuit voltages by the converter in order that more panels may be placed on an individual string or substring, reducing the number of strings required for a given design, and achieving overall system and array manufacture savings.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: July 24, 2018
    Assignee: AMPT, LLC
    Inventors: Anatoli Ledenev, Robert M. Porter
  • Publication number: 20180048161
    Abstract: Renewable electrical energy is provided with aspects and circuitry that can harvest maximum power from an alternative electrical energy source (1) such as a string of solar panels (11) for a power grid (10). Aspects include: i) controlling electrical power creation from photovoltaic DC-AC inverter (5), ii) operating photovoltaic DC-AC inverter (5) at maximal efficiency even when MPP would not be, iii) protecting DC-AC inverter (5) so input can vary over a range of insolation and temperature, and iv) providing dynamically reactive capability to react and assure operation, to permit differing components, to achieve code compliant dynamically reactive photovoltaic power control circuitry (41). With previously explained converters, inverter control circuitry (38) or photovoltaic power converter functionality control circuitry (8) configured as inverter sweet spot converter control circuitry (46) can achieve extraordinary efficiencies with substantially power isomorphic photovoltaic capability at 99.
    Type: Application
    Filed: October 25, 2017
    Publication date: February 15, 2018
    Inventors: Robert M. Porter, Anatoli Ledenev
  • Publication number: 20170373503
    Abstract: Different systems to achieve solar power conversion are provided in at least three different general aspects, with circuitry that can be used to harvest maximum power from a solar source or strings of panels for DC or AC use, perhaps for transfer to a power grid three aspects can exist perhaps independently and relate to: 1) electrical power conversion in a multimodal manner, 2) alternating between differing processes such as by an alternative mode photovoltaic power converter functionality control, and 3) systems that can achieve efficiencies in conversion that are extraordinarily high compared to traditional through substantially power isomorphic photovoltaic DC-DC power conversion capability that can achieve 99.2% efficiency or even only wire transmission losses. Switchmode impedance conversion circuits may have pairs of photovoltaic power series switch elements and pairs of photovoltaic power shunt switch elements.
    Type: Application
    Filed: August 17, 2017
    Publication date: December 28, 2017
    Inventors: Anatoli Ledenev, Robert M. Porter
  • Publication number: 20170271879
    Abstract: Different systems to achieve solar power conversion are provided in at least three different general aspects, with circuitry that can be used to harvest maximum power from a solar source or strings of panels for DC or AC use, perhaps for transfer to a power grid three aspects can exist perhaps independently and relate to: 1) electrical power conversion in a multimodal manner, 2) alternating between differing processes such as by an alternative mode photovoltaic power converter functionality control, and 3) systems that can achieve efficiencies in conversion that are extraordinarily high compared to traditional through substantially power isomorphic photovoltaic DC-DC power conversion capability that can achieve 99.2% efficiency or even only wire transmission losses. Switchmode impedance conversion circuits may have pairs of photovoltaic power series switch elements and pairs of photovoltaic power shunt switch elements.
    Type: Application
    Filed: June 2, 2017
    Publication date: September 21, 2017
    Inventors: Anatoli Ledenev, Robert M. Porter
  • Patent number: 9673630
    Abstract: Different systems to achieve solar power conversion are provided in at least three different general aspects, with circuitry that can be used to harvest maximum power from a solar source or strings of panels for DC or AC use, perhaps for transfer to a power grid three aspects can exist perhaps independently and relate to: 1) electrical power conversion in a multimodal manner, 2) alternating between differing processes such as by an alternative mode photovoltaic power converter functionality control, and 3) systems that can achieve efficiencies in conversion that are extraordinarily high compared to traditional through substantially power isomorphic photovoltaic DC-DC power conversion capability that can achieve 99.2% efficiency or even only wire transmission losses. Switchmode impedance conversion circuits may have pairs of photovoltaic power series switch elements and pairs of photovoltaic power shunt switch elements.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: June 6, 2017
    Assignee: AMPT, LLC
    Inventors: Anatoli Ledenev, Robert M. Porter
  • Publication number: 20160380436
    Abstract: Methods and apparatus may provide for the adaptive operation of a solar power system (3). Solar energy sources (1) and photovoltaic DC-DC power converters (2) may be interconnected in serial, parallel, or combined arrangements. DC photovoltaic power conversion may be accomplished utilizing dynamically adjustable voltage output limits (8) of photovoltaic DC-DC power converters (2). A photovoltaic DC-DC power converter (2) may include at least one external state data interface (7) receptive to at least one external state parameter of a solar power system (3). A dynamically adjustable voltage output limit control (12) may be used to relationally set a dynamically adjustable voltage output limit (8) of a photovoltaic DC-DC power converter (2). Dynamically adjusting voltage output limits (8) may be done in relation to external state parameter information to achieve desired system results.
    Type: Application
    Filed: September 12, 2016
    Publication date: December 29, 2016
    Inventors: Robert M. Porter, Anatoli Ledenev
  • Publication number: 20160365734
    Abstract: Different systems to achieve solar power conversion are provided in at least three different general aspects, with circuitry that can be used to harvest maximum power from a solar source or strings of panels for DC or AC use, perhaps for transfer to a power grid three aspects can exist perhaps independently and relate to: 1) electrical power conversion in a multimodal manner, 2) alternating between differing processes such as by an alternative mode photovoltaic power converter functionality control, and 3) systems that can achieve efficiencies in conversion that are extraordinarily high compared to traditional through substantially power isomorphic photovoltaic DC-DC power conversion capability that can achieve 99.2% efficiency or even only wire transmission losses. Switchmode impedance conversion circuits may have pairs of photovoltaic power series switch elements and pairs of photovoltaic power shunt switch elements.
    Type: Application
    Filed: July 25, 2016
    Publication date: December 15, 2016
    Inventors: Anatoli Ledenev, Robert M. Porter
  • Publication number: 20160336899
    Abstract: One aspect of the inventive technology disclosed herein, in certain embodiments, may involve the determination of at least one measured, instantaneous intra-string current difference for each of the power generating string, and the use of such determinations to assess the existence of leakage current, a frequent ground fault predecessor, thereby enabling preclusion of a ground fault that would otherwise result. Certain methods and detection architecture may enable precise abnormality location, e.g., enabling the identification of which solar module assembly in particular is faulty. Another aspect relates generally, in certain embodiments, to detection circuit architecture operable to sequentially impress a leakage current inducing voltage upon each rail of a photovoltaic system. Another relates generally, in certain embodiments, to the use of at least one current interrupter at each end of a string to preclude flow therethrough in the event of, e.g., unintended field reversal.
    Type: Application
    Filed: June 13, 2016
    Publication date: November 17, 2016
    Inventors: Anatoli Ledenev, Wesley R. Fuller, Robert M. Porter
  • Publication number: 20160329720
    Abstract: A high efficiency solar power system combining photovoltaic sources of power (1) can be converted by a base phase DC-DC photovoltaic converter (6) and an altered phase DC-DC photovoltaic converter (8) that have outputs combined through low energy storage combiner circuitry (9). The converters can be synchronously controlled through a synchronous phase control (11) that synchronously operates switches to provide a conversion combined photovoltaic DC output (10). Converters can be provided for individual source conversion or phased operational modes, the latter presenting a combined low photovoltaic energy storage DC-DC photovoltaic converter (15) at string or individual panel levels.
    Type: Application
    Filed: July 18, 2016
    Publication date: November 10, 2016
    Inventor: Anatoli Ledenev
  • Patent number: 9466737
    Abstract: The inventive technology, in certain embodiments, may be generally described as a solar power generation system with a converter, which may potentially include two or more sub-converters, established intermediately of one or more strings of solar panels. Particular embodiments may involve sweet spot operation in order to achieve improvements in efficiency, and bucking of open circuit voltages by the converter in order that more panels may be placed on an individual string or substring, reducing the number of strings required for a given design, and achieving overall system and array manufacture savings.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 11, 2016
    Assignee: AMPT, LLC
    Inventor: Anatoli Ledenev
  • Publication number: 20160268809
    Abstract: The inventive technology, in certain embodiments, may be generally described as a solar power generation system with a converter, which may potentially include two or more sub-converters, established intermediately of one or more strings of solar panels. Particular embodiments may involve sweet spot operation in order to achieve improvements in efficiency, and bucking of open circuit voltages by the converter in order that more panels may be placed on an individual string or substring, reducing the number of strings required for a given design, and achieving overall system and array manufacture savings.
    Type: Application
    Filed: May 25, 2016
    Publication date: September 15, 2016
    Applicant: AMPT, LLC
    Inventors: Anatoli Ledenev, Robert M. Porter