Patents by Inventor Andre Knoesen

Andre Knoesen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10400270
    Abstract: A technique that uses nanotechnology to electrically detect and identify RNA sequences without the need for using enzymatic amplification methods or fluorescent labels. The technique may be scaled into large multiplexed arrays for high-throughput and rapid screening. The technique is further able to differentiate closely related variants of a given bacterial or viral species or strain. This technique addresses the need for a quick, efficient, and inexpensive bacterial and viral detection and identification system.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: September 3, 2019
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Andre Knoesen, Paul Alexander Feldstein, Joshua Hihath, Erkin Seker, Maria Louise Marco, Bryce William Falk
  • Publication number: 20180066310
    Abstract: A technique that uses nanotechnology to electrically detect and identify RNA sequences without the need for using enzymatic amplification methods or fluorescent labels. The technique may be scaled into large multiplexed arrays for high-throughput and rapid screening. The technique is further able to differentiate closely related variants of a given bacterial or viral species or strain. This technique addresses the need for a quick, efficient, and inexpensive bacterial and viral detection and identification system.
    Type: Application
    Filed: September 12, 2017
    Publication date: March 8, 2018
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Andre Knoesen, Paul Alexander Feldstein, Joshua Hihath, Erkin Seker, Maria Louise Marco, Bryce William Falk
  • Patent number: 9803234
    Abstract: A technique that uses nanotechnology to electrically detect and identify RNA sequences without the need for using enzymatic amplification methods or fluorescent labels. The technique may be scaled into large multiplexed arrays for high-throughput and rapid screening. The technique is further able to differentiate closely related variants of a given bacterial or viral species or strain. This technique addresses the need for a quick, efficient, and inexpensive bacterial and viral detection and identification system.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: October 31, 2017
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Andre Knoesen, Paul Alexander Feldstein, Joshua Hihath, Erkin Seker, Maria Louise Marco, Bryce William Falk
  • Publication number: 20150275279
    Abstract: A technique that uses nanotechnology to electrically detect and identify RNA sequences without the need for using enzymatic amplification methods or fluorescent labels. The technique may be scaled into large multiplexed arrays for high-throughput and rapid screening. The technique is further able to differentiate closely related variants of a given bacterial or viral species or strain. This technique addresses the need for a quick, efficient, and inexpensive bacterial and viral detection and identification system.
    Type: Application
    Filed: April 1, 2015
    Publication date: October 1, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Andre Knoesen, Paul Alexander Feldstein, Joshua Hihath, Erkin Seker, Maria Louise Marco, Bryce William Falk
  • Patent number: 8965737
    Abstract: A device, including sample and reference channels through which first and second solutions flow, respectively, the first solution including an analyte, the channels having a metal film in contact with the first and second solutions, the metal film configured with a linker to selectively bind the analyte; a light source whose output is modulated by an optical system, so that light is directed from the optical system alternately towards the sample and reference channels, surface plasmons within the metal film being created; a first photodetector that monitors the strength of the output from the light source; a second photodetector that collects optical signals reflected from the metal film; electronics that monitors output from the first and the second photodetectors, thereby detecting a noise-compensated difference in signals from the two channels; and a computer processor that determines, from analysis of the noise-compensated difference, presence of the analyte in the first solution.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Robert E. Feller, Andre Knoesen, Robert D. Miller
  • Publication number: 20130110467
    Abstract: A device, including sample and reference channels through which first and second solutions flow, respectively, the first solution including an analyte, the channels having a metal film in contact with the first and second solutions, the metal film configured with a linker to selectively bind the analyte; a light source whose output is modulated by an optical system, so that light is directed from the optical system alternately towards the sample and reference channels, surface plasmons within the metal film being created; a first photodetector that monitors the strength of the output from the light source; a second photodetector that collects optical signals reflected from the metal film; electronics that monitors output from the first and the second photodetectors, thereby detecting a noise-compensated difference in signals from the two channels; and a computer processor that determines, from analysis of the noise-compensated difference, presence of the analyte in the first solution.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 2, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert E. Feller, Andre Knoesen, Robert D. Miller
  • Patent number: 6047095
    Abstract: A coplanar waveguide polymeric in-line fiber construct (CPW-PILF) formed on an optic half coupler substrate base or D-fiber wherein the surface is polished down through the cladding on the optical fiber so as to form an evanescent coupling region on the surface. Co-planar, spaced-apart electrodes are deposited on the surface with their gap aligned over the coupling region, and an electro-optic (EO) polymeric waveguide is deposited over the electrodes and between the electrode gap. Light transmitted thorough the optical fiber is evanescently coupled to said waveguide and modulated by a signal applied to the electrodes. Alternatively, the waveguide is deposited on the surface of the substrate and the electrodes are deposited over the waveguide.
    Type: Grant
    Filed: December 21, 1998
    Date of Patent: April 4, 2000
    Assignees: The Regents of the University of California, Optical Networks, Incorporated
    Inventors: Andre Knoesen, Diego Yankelevich, Scott A. Hamilton, Nicholas L. Abbott, Richard A. Hill, Gary Bjorklund
  • Patent number: 5854864
    Abstract: A coplanar waveguide polymeric in-line fiber construct (CPW-PILF) formed on an optic half coupler substrate base or D-fiber wherein the surface is polished down through the cladding on the optical fiber so as to form an evanescent coupling region on the surface. Co-planar, spaced-apart electrodes are deposited on the surface with their gap aligned over the coupling region, and an electro-optic (EO) polymeric waveguide is deposited over the electrodes and between the electrode gap. Light transmitted thorough the optical fiber is evanescently coupled to said waveguide and modulated by a signal applied to the electrodes. Alternatively, the waveguide is deposited on the surface of the substrate and the electrodes are deposited over the waveguide.
    Type: Grant
    Filed: July 16, 1996
    Date of Patent: December 29, 1998
    Assignees: The Regents of the University of California, Optical Networks, Incorporated
    Inventors: Andre Knoesen, Diego Yankelevich, Scott A Hamilton, Nicholas L. Abbott, Richard A. Hill, Gary Bjorklund