Patents by Inventor Andre Steynberg

Andre Steynberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210095211
    Abstract: The present technology is directed to processes for conversion of synthesis gas in a tubular reactor to produce a synthetic product that utilizes high activity carbon monoxide hydrogenation catalysts and a heat transfer structure that surprisingly provides for higher per pass conversion with high selectivity for the desired synthetic product without thermal runaway.
    Type: Application
    Filed: December 2, 2020
    Publication date: April 1, 2021
    Inventors: Andre STEYNBERG, Bin YANG, Ravi ARORA, Laura SILVA, Heinz ROBOTA, Sean FITZGERALD, Paul NEAGLE, Jason ROBINSON, Paul SCHUBERT, Steven PERRY
  • Patent number: 10889762
    Abstract: The present technology is directed to processes for conversion of synthesis gas in a tubular reactor to produce a synthetic product that utilizes high activity carbon monoxide hydrogenation catalysts and a heat transfer structure that surprisingly provides for higher per pass conversion with high selectivity for the desired synthetic product without thermal runaway.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: January 12, 2021
    Assignee: VELOCYS TECHNOLOGIES LIMITED
    Inventors: Andre Steynberg, Bin Yang, Ravi Arora, Laura Silva, Heinz Robota, Sean Fitzgerald, Paul Neagle, Jason Robinson, Paul Schubert, Steven Perry
  • Publication number: 20190284479
    Abstract: The present technology is directed to processes for conversion of synthesis gas in a tubular reactor to produce a synthetic product that utilizes high activity carbon monoxide hydrogenation catalysts and a heat transfer structure that surprisingly provides for higher per pass conversion with high selectivity for the desired synthetic product without thermal runaway.
    Type: Application
    Filed: December 8, 2017
    Publication date: September 19, 2019
    Inventors: Andre STEYNBERG, Bin YANG, Ravi ARORA, Laura SILVA, Heinz ROBOTA, Sean FITZGERALD, Paul NEAGLE, Jason ROBINSON, Paul SCHUBERT, Steven PERRY
  • Patent number: 9950975
    Abstract: The present technology is directed to processes involving formation of hydrocarbons and oxygenated hydrocarbons through use of oxygen supplied by ion transport membranes. More particularly, the present technology relates in part to a process involving steam reforming and subsequent production of a synthetic product where carbon dioxide and/or hydrogen downstream of the process is reclaimed to generate the synthetic product. The present technology also relates in part to an ethylene formation process involving a viral-templated coupling catalyst in the presence of an ion transport membrane.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: April 24, 2018
    Assignee: VELOCYS TECHNOLOGIES, LTD.
    Inventors: Andre Steynberg, Roy Lipski
  • Publication number: 20170327444
    Abstract: The present technology is directed to processes involving formation of hydrocarbons and oxygenated hydrocarbons through use of oxygen supplied by ion transport membranes. More particularly, the present technology relates in part to a process involving steam reforming and subsequent production of a synthetic product where carbon dioxide and/or hydrogen downstream of the process is reclaimed to generate the synthetic product. The present technology also relates in part to an ethylene formation process involving a viral-templated coupling catalyst in the presence of an ion transport membrane.
    Type: Application
    Filed: July 31, 2017
    Publication date: November 16, 2017
    Applicant: Velocys Technologies, Ltd.
    Inventors: Andre STEYNBERG, Roy LIPSKI
  • Patent number: 9725385
    Abstract: The present technology is directed to processes involving formation of hydrocarbons and oxygenated hydrocarbons through use of oxygen supplied by ion transport membranes. More particularly, the present technology relates in part to a process involving steam reforming and subsequent production of a synthetic product where carbon dioxide and/or hydrogen downstream of the process is reclaimed to generate the synthetic product. The present technology also relates in part to an ethylene formation process involving a viral-templated coupling catalyst in the presence of an ion transport membrane.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: August 8, 2017
    Assignee: VELOCYS TECHNOLOGIES, LTD.
    Inventors: Andre Steynberg, Roy Lipski
  • Publication number: 20160318824
    Abstract: The present technology is directed to processes involving formation of hydrocarbons and oxygenated hydrocarbons through use of oxygen supplied by ion transport membranes. More particularly, the present technology relates in part to a process involving steam reforming and subsequent production of a synthetic product where carbon dioxide and/or hydrogen downstream of the process is reclaimed to generate the synthetic product. The present technology also relates in part to an ethylene formation process involving a viral-templated coupling catalyst in the presence of an ion transport membrane.
    Type: Application
    Filed: April 28, 2016
    Publication date: November 3, 2016
    Inventors: Andre STEYNBERG, Roy LIPSKI
  • Publication number: 20070142481
    Abstract: A process (10) for synthesising hydrocarbons includes feeding a gaseous feedstock (18) comprising hydrogen and carbon monoxide, into a first Fischer-Tropsch reaction stage (12) which is a three-phase low temperature catalytic Fischer-Tropsch reaction stage, and allowing the hydrogen and carbon monoxide partially to react catalytically in the first reaction stage (12) to form hydrocarbons. At least a portion of a tail gas (32) which includes unreacted hydrogen and carbon monoxide obtained from the first reaction stage, is fed into a second Fischer-Tropsch reaction stage (42) which is a two-phase high temperature catalytic Fischer-Tropsch reaction stage. The hydrogen and carbon monoxide are allowed at least partially to react catalytically in the second reaction stage (42) to form gaseous hydrocarbons.
    Type: Application
    Filed: August 20, 2004
    Publication date: June 21, 2007
    Applicant: Sasol Technology (Proprietary) Limited
    Inventors: André Steynberg, Jacob De Boer, Herman Nel, Werner Ernst, Johannes Liebenberg
  • Publication number: 20070043125
    Abstract: A process (10) for producing liquid and, optionally, gaseous products from gaseous reactants includes feeding at a low level gaseous reactants (14) and, optionally, a portion of a recycle gas stream into a vertically extending slurry bed (70) of solid particles suspended in a suspension liquid inside a vessel (12), and feeding, as an additional gas feed (58), at least a portion of the recycle gas stream into the slurry bed (70) above the level at which the gaseous reactants (814) are fed into the slurry bed (70) and above the lower 20% of the vertical height of the slurry bed (70).
    Type: Application
    Filed: May 12, 2004
    Publication date: February 22, 2007
    Applicant: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Andre Steynberg, Berthold Breman
  • Publication number: 20060272986
    Abstract: Slurry phase apparatus is provided which includes a slurry vessel for holding a slurry comprising a liquid and solid particles and gas distribution means for injecting a gas into the slurry. The gas distribution means includes a sparger device which includes an apertured sparger portion inside the slurry vessel, an inlet portion leading into the slurry vessel and an outlet portion leading from the slurry vessel. The gas distribution means also includes closure means, external of the slurry vessel, and being operable to allow or deny flow from the sparger portion out through the outlet portion of the sparger device. The invention extends to a method of introducing or reintroducing a gas into a slurry vessel.
    Type: Application
    Filed: August 10, 2006
    Publication date: December 7, 2006
    Applicant: SASOL Technology (Proprietary) Limited
    Inventor: Andre Steynberg
  • Publication number: 20060266674
    Abstract: A method is provided for introducing or reintroducing a gas into a slurry vessel holding a slurry comprising a liquid and solid particles and having a gas distributor for injecting a gas into the slurry, where the gas distributor includes a sparger device comprising an apertured sparger portion inside the slurry vessel, an inlet portion leading into the slurry vessel and an outlet portion leading from the slurry vessel, and a valve, external of the slurry vessel, operable to allow or deny flow from the sparger portion out through the outlet portion of the sparger device. The method comprises operating the valve to allow flow through the outlet portion of the sparger device, flushing the sparger device through the outlet portion to remove settled material which may be present in the sparger device, operating the valve to deny flow through the outlet portion of the sparger device, and introducing or reintroducing the gas into the slurry vessel through the sparger device.
    Type: Application
    Filed: August 10, 2006
    Publication date: November 30, 2006
    Applicant: SASOL Technology (Proprietary) Limited
    Inventor: Andre Steynberg
  • Publication number: 20050027020
    Abstract: A process for starting up a Fischer-Tropsch reactor includes establishing, in the reactor, an initial charge of molten wax. The initial reactor temperature is below the line-out reactor temperature but is sufficiently high for a Fischer-Tropsch reaction to take place. The reactor contains, in contact with the molten wax, at least a portion of its line-out catalyst inventory. Syngas is fed into the reactor at an initial flow rate below the line-out syngas flow rate. Initially a syngas H2:CO molar ratio is maintained at a higher value than its line-out value, whereafter the syngas H2:CO molar ratio is decreased to its line-out value. The syngas flow rate and the reactor temperature are then increased to their line-out values.
    Type: Application
    Filed: August 10, 2004
    Publication date: February 3, 2005
    Inventor: Andre Steynberg
  • Patent number: 6784212
    Abstract: A process for producing liquid hydrocarbon products includes converting a natural gas feedstock to synthesis gas, which is reacted, in a hydrocarbon synthesis stage and by a Fischer-Tropsch reaction, to produce a range of hydrocarbon product. An overheads vapour phase is separated from a liquid phase, and fed to a product condensation stage, where condensation of some components thereof takes place. A vapour phase, an aqueous phase, and a condensed product phase are withdrawn. The vapour phase is fed to a vapour phase work-up stage where a gas component comprising increased concentrations of CO and H2, relative to the vapour phase feed to the vapour phase work-up stage, is recovered, with this gas component being recycled to the hydrocarbon synthesis stage.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: August 31, 2004
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Andre Steynberg, Simon Charles Clarke
  • Publication number: 20040077736
    Abstract: A process for producing liquid hydrocarbon products includes converting a natural gas feedstock to synthesis gas, which is reacted, in a hydrocarbon synthesis stage and by a Fischer-Tropsch reaction, to produce a range of hydrocarbon products. An overheads vapour phase is separated from a liquid phase, and fed to a product condensation stage, where condensation of some components thereof takes place. A vapour phase, an aqueous phase, and a condensed product phase are withdrawn. The vapour phase is fed to a vapour phase work-up stage where a gas component comprising increased concentrations of CO and H2, relative to the vapour phase feed to the vapour phase work-up stage, is recovered, with this gas component being recycled to the hydrocarbon synthesis stage.
    Type: Application
    Filed: June 24, 2002
    Publication date: April 22, 2004
    Applicant: Sasol Technology (Proprietary) Limited
    Inventors: Andre Steynberg, Simon Charles Clarke