Patents by Inventor Andrea Mucignat

Andrea Mucignat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120233478
    Abstract: Aspects of the present invention provide energy conserving communications for networked thermostats powered, in part, by batteries. A thermostat communication server stores a thermostat battery-level to determine what data should be sent to the thermostat. The thermostat communication server classifies types of data to be transmitted to the thermostat according to a data priority ranging from a low-priority to a high-priority data type. If the battery-level associated with the battery on the thermostat is at a low battery-level, the thermostat communication server may only transmit data classified under a high-priority data type. This conserves the power used by the thermostat, allows the battery on the thermostat time to recharge and perform other functions. If the battery-level of the thermostat is at a high level, the thermostat communication server may transmit a range of data to the thermostat classified from a low-priority type to a high-priority data type.
    Type: Application
    Filed: October 17, 2011
    Publication date: September 13, 2012
    Inventors: Andrea Mucignat, Oliver W. Steele, Senthilvasan Supramaniam, Osborne B. Hardison, Richard J. Schultz, III
  • Patent number: 8234512
    Abstract: Systems and methods for processing motion sensor data using various power management modes of an electronic device are provided. Power may be provided to a motion sensor during a first power mode of the device. In response to the motion sensor detecting a motion event with a magnitude exceeding a threshold, the sensor may transmit a wake up signal to a power management unit of the device. In response to receiving the wake up signal, the power management unit may switch the device to a second power mode. The device may provide power to a processor and load the processor with a motion sensing application when switching to the second power mode. During the second power mode, motion sensor data may be processed to determine that the motion event is not associated with an intentional user input and the device may return to the first power mode.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: July 31, 2012
    Assignee: Apple Inc.
    Inventors: Andrea Mucignat, Saurabh Gupta
  • Publication number: 20120179300
    Abstract: In a multi-sensing, wirelessly communicating learning thermostat that uses power-harvesting to charge an internal battery, methods are disclosed for ensuring that the battery does not become depleted or damaged while at the same time ensuring selected levels of thermostat functionality. Battery charge status is monitored to determine whether the present rate of power usage needs to be stemmed. If the present rate of power usage needs to be stemmed, then a progression of performance levels and/or functionalities are scaled back according to a predetermined progressive power conservation algorithm. In a less preferred embodiment, there is a simple progressive shutdown of functionalities turned off in sequence until the desired amount of discharge stemming is reached. Battery charge preservation measures are also described for cases when an interruption of external supply power used to recharge the battery is detected.
    Type: Application
    Filed: October 6, 2011
    Publication date: July 12, 2012
    Applicant: NEST LABS, INC.
    Inventors: Daniel Adam WARREN, Grant M. ERICKSON, Andrea MUCIGNAT, Edwin H. SATTERTHWAITE, JR., Joseph Adam RUFF, Joseph E. PALMER, Shigefumi HONJO
  • Publication number: 20120050210
    Abstract: Compensation for signal drift in a touch and hover sensing device is disclosed. A touch and hover sensing device can include a sensing panel to sense an object touching or hovering over the panel, a grounding device to periodically interact with the panel, and a control system to measure capacitance of the panel when the grounding device interacts with the panel, where the measurement captures any signal drift in the panel, and to set the measurement as a new baseline capacitance of the panel. Alternatively, the touch and hover sensing device can forgo the grounding device and configure the control system to measure capacitance of the panel either when there has been no touching or hovering object or when there is a substantially stationary touching or hovering object at the panel for a determinative time period, where the measurement captures any signal drift in the panel, and to set the measurement from this time period as the new baseline capacitance.
    Type: Application
    Filed: September 30, 2010
    Publication date: March 1, 2012
    Inventors: Brian Michael King, Omar Leung, Paul G. Puskarich, Jeffrey Traer Bernstein, Andrea Mucignat, Avi E. Cieplinski, Muhammad U. Choudry, Praveen R. Subramani, Marc J. Piche, David T. Amm, Duncan Robert Kerr
  • Publication number: 20120050211
    Abstract: Detecting a signal from a touch and hover sensing device, in which the signal can be indicative of concurrent touch events and/or hover events, is disclosed. A touch event can indicate an object touching the device. A hover event can indicate an object hovering over the device. The touch and hover sensing device can ensure that a desired hover event is not masked by an incidental touch event, e.g., a hand holding the device, by compensating for the touch event in the detected signal that represents both events. Conversely, when both a hover event and a touch event are desired, the touch and hover sensing device can ensure that both events are detected by adjusting the device sensors and/or the detected signal. The touch and hover sensing device can also detect concurrent hover events by identifying multiple peaks in the detected signal, each peak corresponding to a position of a hovering object.
    Type: Application
    Filed: September 30, 2010
    Publication date: March 1, 2012
    Inventors: Brian Michael KING, Omar Leung, Paul G. Puskarich, Jeffrey Traer Bernstein, Andrea Mucignat, Avi E. Cieplinski, Muhammad U. Choudry, Praveen R. Subramani, Marc J. Piche, David T. Amm, Duncan Robert Kerr
  • Publication number: 20120050209
    Abstract: Compensation for sensors in a touch and hover sensing device is disclosed. Compensation can be for sensor resistance and/or sensor sensitivity variation that can adversely affect touch and hover measurements at the sensors. To compensate for sensor resistance, the device can gang adjacent sensors together so as to reduce the overall resistance of the sensors. In addition or alternatively, the device can drive the sensors with voltages from multiple directions so as to reduce the effects of the sensors' resistance. To compensate for sensor sensitivity variation (generally at issue for hover measurements), the device can apply a gain factor to the measurements, where the gain factor is a function of the sensor location, so as to reduce the sensitivity variation at different sensor locations on the device.
    Type: Application
    Filed: September 30, 2010
    Publication date: March 1, 2012
    Inventors: Brian Michael KING, Omar Leung, Paul G. Puskarich, Jeffrey Traer Bernstein, Andrea Mucignat, Avi E. Cieplinski, Muhammad U. Choudry, Praveen R. Subramani, Marc J. Piche, David T. Amm, Duncan Robert Kerr
  • Publication number: 20120050181
    Abstract: Signal processing for a touch and hover sensing display device is disclosed. A touch and hover sensing display device can include a sensing panel for sensing a touch or hover event, a display for displaying graphical information to select based on the touch or hover event, and a control system for processing a signal indicative of the touch or hover event. The control system can process the signal to determine to which display location a hovering object is pointing according to a profile of the object's shape. In addition or alternatively, the control system can process the signal to differentiate between a close small object and a distant large object so as to subsequently perform intended actions of the device based, at least in part, on the object distance and/or area (or size). The display can be positioned at a desirable distance from the panel so as to reduce interference from the display to the panel and avoid adverse effects on the signal.
    Type: Application
    Filed: September 30, 2010
    Publication date: March 1, 2012
    Inventors: Brian Michael KING, Omar Leung, Paul G. Puskarich, Jeffrey Traer Bernstein, Andrea Mucignat, Avi E. Cieplinski, Muhammad U. Choudry, Praveen R. Subramani, Marc J. Piche, David T. Amm, Duncan Robert Kerr
  • Publication number: 20120050180
    Abstract: Touch and hover switching is disclosed. A touch and hover sensing device can switch between a touch mode and a hover mode. During a touch mode, the device can be switched to sense one or more objects touching the device. During a hover mode, the device can be switched to sense one or more objects hovering over the device. The device can include a panel having multiple sensors for sensing a touching object and/or a hovering object and a touch and hover control system for switching the device between the touch and hover modes. The device's touch and hover control system can include a touch sensing circuit for coupling to the sensors to measure a capacitance indicative of a touching object during the touch mode, a hover sensing circuit for coupling to the sensors to measure a capacitance indicative of a hovering object during the hover mode, and a switching mechanism for switching the sensors to couple to either the touch sensing circuit or the hover sensing circuit.
    Type: Application
    Filed: September 30, 2010
    Publication date: March 1, 2012
    Inventors: Brian Michael KING, Omar LEUNG, Paul G. PUSKARICH, Jeffrey Traer BERNSTEIN, Andrea MUCIGNAT, Avi E. CIEPLINSKI, Muhammad U. CHOUDRY, Praveen R. SUBRAMANI, Marc J. PICHE, David T. AMM, Duncan Robert KERR
  • Publication number: 20110093729
    Abstract: Systems and methods for processing motion sensor data using various power management modes of an electronic device are provided. Power may be provided to a motion sensor during a first power mode of the device. In response to the motion sensor detecting a motion event with a magnitude exceeding a threshold, the sensor may transmit a wake up signal to a power management unit of the device. In response to receiving the wake up signal, the power management unit may switch the device to a second power mode. The device may provide power to a processor and load the processor with a motion sensing application when switching to the second power mode. During the second power mode, motion sensor data may be processed to determine that the motion event is not associated with an intentional user input and the device may return to the first power mode.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Applicant: Apple Inc.
    Inventors: Andrea Mucignat, Saurabh Gupta
  • Publication number: 20110054833
    Abstract: Systems and methods for processing motion sensor data using data templates accessible to an electronic device are provided. Each data template may include template sensor data and template event data. Template sensor data of one or more templates may be compared by the electronic device to motion sensor data generated by a motion sensor. A particular template may be distinguished based on the similarity between the motion sensor data and the template sensor data of the particular template. The template event data of the distinguished particular template may then be used to control a function of the electronic device. The motion sensor data and/or the template sensor data may be associated with a user stepping event, and the template event data of the distinguished particular template may then be used to record the occurrence of the stepping event to track a user's workout history.
    Type: Application
    Filed: September 2, 2009
    Publication date: March 3, 2011
    Applicant: Apple Inc.
    Inventor: Andrea Mucignat
  • Patent number: 7873849
    Abstract: Systems and methods for processing motion sensor data using various power management modes of an electronic device are provided. Power may be provided to a motion sensor during a first power mode of the device. In response to the motion sensor detecting a motion event with a magnitude exceeding a threshold, the sensor may transmit a wake up signal to a power management unit of the device. In response to receiving the wake up signal, the power management unit may switch the device to a second power mode. The device may provide power to a processor and load the processor with a motion sensing application when switching to the second power mode. During the second power mode, motion sensor data may be processed to determine that the motion event is not associated with an intentional user input and the device may return to the first power mode.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: January 18, 2011
    Assignee: Apple Inc.
    Inventors: Andrea Mucignat, Saurabh Gupta
  • Publication number: 20100235667
    Abstract: Systems and methods for processing motion sensor data using various power management modes of an electronic device are provided. Power may be provided to a motion sensor during a first power mode of the device. In response to the motion sensor detecting a motion event with a magnitude exceeding a threshold, the sensor may transmit a wake up signal to a power management unit of the device. In response to receiving the wake up signal, the power management unit may switch the device to a second power mode. The device may provide power to a processor and load the processor with a motion sensing application when switching to the second power mode. During the second power mode, motion sensor data may be processed to determine that the motion event is not associated with an intentional user input and the device may return to the first power mode.
    Type: Application
    Filed: September 2, 2009
    Publication date: September 16, 2010
    Applicant: Apple Inc.
    Inventors: Andrea Mucignat, Saurabh Gupta
  • Publication number: 20100033422
    Abstract: Systems and methods for processing data from a motion sensor to detect intentional movements of a device are provided. An electronic device having a motion sensor may process motion sensor data along one or more dimensions to generate an acceleration value representative of the movement of the electronic device. The electronic device may then determine whether the acceleration value changes from less than a low threshold, to more than a high threshold, and again to less than the low threshold within a particular amount of time, reflecting an intentional movement of the electronic device by the user. In response to determining that the acceleration value is associated with an intentional movement of the electronic device, the electronic device may perform a particular event or operation. For example, in response to detecting that an electronic device has been shaken, the electronic device may shuffle a media playlist.
    Type: Application
    Filed: August 5, 2008
    Publication date: February 11, 2010
    Applicant: Apple Inc
    Inventors: Andrea Mucignat, Bryan J. James
  • Publication number: 20090141046
    Abstract: A multi-dimensional scroll wheel is disclosed. Scroll wheel circuitry is provided to detect input gestures that traverse the center of the scroll wheel and to detect multi-touch input. The scroll wheel can include a first plurality of sensor elements arranged in a first closed loop and a second plurality of sensor elements arranged in a second closed loop, the first and second closed loops being concentrically arranged about the center of the scroll wheel.
    Type: Application
    Filed: September 5, 2008
    Publication date: June 4, 2009
    Applicant: Apple Inc.
    Inventors: Lakshman Rathnam, Louis Bokma, Fletcher Rothkopf, Andrea Mucignat, Erturk Kocalar, Benjamin Lyon, Joseph Fisher