Patents by Inventor Andreas Arp

Andreas Arp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11256284
    Abstract: Disclosed aspects relate to a clock distribution network of a synchronous logic device. The synchronous logic device has sub-circuits having different clock domains. The clock domains form a hierarchical structure. The clock distribution network has a clock source to provide a global clock signal. A programmable delay line associated with a sub-circuit generates a local clock signal for the sub-circuit by delaying the signal. A global skew control circuit can manage clock skew between the local clock signals. The global skew control circuit may adjust a delay, determine initial operations for the delay lines, verify whether it is possible to perform the initial operations, and perform a correction operation. The correction operation can include correcting the control commands such that the corrected commands lead to the same change of skew adjustment between the local clocks.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: February 22, 2022
    Assignee: International Business Machines Corporation
    Inventors: Andreas Arp, Andre Hertwig, Michael Koch, Matthias Ringe
  • Patent number: 10892744
    Abstract: The present invention provides a system and method of correcting duty cycle (DC) and compensating for active clock edge shift. In an embodiment, the system includes at least one control circuit to receive DCC control signals and to output at least one first adjustment signal, at least one second adjustment signal, at least one first correction signal, and at least one second correction signal, at least one adjustment circuit to change a DC value of an input clock signal, at least one correction circuit to compensate for a shift of an active clock edge of the input clock signal, and where one of the at least one adjustment circuit and the at least one correction circuit is to receive the input clock signal and wherein one of the at least one adjustment circuit and the at least one correction circuit is to transmit a corrected output clock signal.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: January 12, 2021
    Assignee: International Business Machines Corporation
    Inventors: Michael Koch, Matthias Ringe, Andreas Arp, Fatih Cilek
  • Patent number: 10756714
    Abstract: Disclosed aspects relate to a clock distribution network of a synchronous logic device. The synchronous logic device comprises multiple sub-circuits belonging to different clock domains. The clock distribution network comprises a clock source operable for providing a global clock signal, at least one programmable delay line associated with a certain sub-circuit operable for generating a local clock signal for said sub-circuit by delaying the global clock signal or a signal derived therefrom and a global skew control circuit for managing clock skew between the local clock signals. The global skew control circuit is operable for managing clock skew between at least some local clock signals by regularly adjusting the delay caused by at least one programmable delay line when in a deskewing operating mode, and disabling adjusting the delays of the programmable delay lines when in a locked operating mode.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: August 25, 2020
    Assignee: International Business Machines Corporation
    Inventors: Andreas Arp, Fatih Cilek, Michael Koch, Matthias Ringe
  • Patent number: 10651834
    Abstract: An apparatus of performing a clock skew adjustment between N clock signals. 2(N?1) skew sensors are configured as successive pairs k, each pair k having a first skew sensor and a second skew sensor. The first skew sensor receives a third clock signal obtained by delaying the first clock signal by a first delay and a fourth clock signal obtained by delaying the second clock signal by a second delay, and generates first information based on the third and fourth clock signals. The second skew sensor receives a fifth clock signal obtained by delaying the first clock signal by a third delay and a sixth clock signal obtained by delaying the second clock signal by a fourth delay, and generates second information based on the fifth and sixth clock signals. A skew controller performs the clock skew adjustment based on the first and second information.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: May 12, 2020
    Assignee: International Business Machines Corporation
    Inventors: Andreas Arp, Fatih Cilek, Andre Hertwig, Michael Koch, Matthias Ringe
  • Publication number: 20200142443
    Abstract: Disclosed aspects relate to a clock distribution network of a synchronous logic device. The synchronous logic device has sub-circuits having different clock domains. The clock domains form a hierarchical structure. The clock distribution network has a clock source to provide a global clock signal. A programmable delay line associated with a sub-circuit generates a local clock signal for the sub-circuit by delaying the signal. A global skew control circuit can manage clock skew between the local clock signals. The global skew control circuit may adjust a delay, determine initial operations for the delay lines, verify whether it is possible to perform the initial operations, and perform a correction operation. The correction operation can include correcting the control commands such that the corrected commands lead to the same change of skew adjustment between the local clocks.
    Type: Application
    Filed: January 7, 2020
    Publication date: May 7, 2020
    Inventors: Andreas Arp, Andre Hertwig, Michael Koch, Matthias Ringe
  • Patent number: 10564664
    Abstract: Disclosed aspects relate to a clock distribution network of a synchronous logic device. The synchronous logic device has sub-circuits having different clock domains. The clock domains form a hierarchical structure. The clock distribution network has a clock source to provide a global clock signal. A programmable delay line associated with a sub-circuit generates a local clock signal for the sub-circuit by delaying the signal. A global skew control circuit can manage clock skew between the local clock signals. The global skew control circuit may adjust a delay, determine initial operations for the delay lines, verify whether it is possible to perform the initial operations, and perform a correction operation. The correction operation can include correcting the control commands such that the corrected commands lead to the same change of skew adjustment between the local clocks.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: February 18, 2020
    Assignee: International Business Machines Corporation
    Inventors: Andreas Arp, Andre Hertwig, Michael Koch, Matthias Ringe
  • Publication number: 20200044636
    Abstract: An apparatus of performing a clock skew adjustment between N clock signals. 2(N?1) skew sensors are configured as successive pairs k, each pair k having a first skew sensor and a second skew sensor. The first skew sensor receives a third clock signal obtained by delaying the first clock signal by a first delay and a fourth clock signal obtained by delaying the second clock signal by a second delay, and generates first information based on the third and fourth clock signals. The second skew sensor receives a fifth clock signal obtained by delaying the first clock signal by a third delay and a sixth clock signal obtained by delaying the second clock signal by a fourth delay, and generates second information based on the fifth and sixth clock signals. A skew controller performs the clock skew adjustment based on the first and second information.
    Type: Application
    Filed: October 15, 2019
    Publication date: February 6, 2020
    Inventors: Andreas Arp, Fatih Cilek, Andre Hertwig, Michael Koch, Matthias Ringe
  • Patent number: 10469063
    Abstract: An apparatus of performing a clock skew adjustment between at least first and second clock signals includes first and second skew sensors and a skew controller. The first skew sensor receives a third clock signal obtained by delaying the first clock signal by a first delay and a fourth clock signal obtained by delaying the second clock signal by a second delay, and generates first information based on the third and fourth clock signals. The second skew sensor receives a fifth clock signal obtained by delaying the first clock signal by a third delay and a sixth clock signal obtained by delaying the second clock signal by a fourth delay, and generates second information based on the fifth and sixth clock signals. Each of the first and second information varies depending on the clock skew. The skew controller performs the clock skew adjustment based on the first and second information.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: November 5, 2019
    Assignee: International Business Machines Corporation
    Inventors: Andreas Arp, Fatih Cilek, Andre Hertwig, Michael Koch, Matthias Ringe
  • Publication number: 20190280680
    Abstract: Disclosed aspects relate to a clock distribution network of a synchronous logic device. The synchronous logic device comprises multiple sub-circuits belonging to different clock domains. The clock distribution network comprises a clock source operable for providing a global clock signal, at least one programmable delay line associated with a certain sub-circuit operable for generating a local clock signal for said sub-circuit by delaying the global clock signal or a signal derived therefrom and a global skew control circuit for managing clock skew between the local clock signals. The global skew control circuit is operable for managing clock skew between at least some local clock signals by regularly adjusting the delay caused by at least one programmable delay line when in a deskewing operating mode, and disabling adjusting the delays of the programmable delay lines when in a locked operating mode.
    Type: Application
    Filed: May 28, 2019
    Publication date: September 12, 2019
    Inventors: Andreas Arp, Fatih Cilek, Michael Koch, Matthias Ringe
  • Publication number: 20190222206
    Abstract: An apparatus of performing a clock skew adjustment between at least first and second clock signals includes first and second skew sensors and a skew controller. The first skew sensor receives a third clock signal obtained by delaying the first clock signal by a first delay and a fourth clock signal obtained by delaying the second clock signal by a second delay, and generates first information based on the third and fourth clock signals. The second skew sensor receives a fifth clock signal obtained by delaying the first clock signal by a third delay and a sixth clock signal obtained by delaying the second clock signal by a fourth delay, and generates second information based on the fifth and sixth clock signals. Each of the first and second information varies depending on the clock skew. The skew controller performs the clock skew adjustment based on the first and second information.
    Type: Application
    Filed: March 22, 2019
    Publication date: July 18, 2019
    Inventors: Andreas Arp, Fatih Cilek, Andre Hertwig, Michael Koch, Matthias Ringe
  • Patent number: 10355683
    Abstract: The present invention provides a system and method of correcting duty cycle (DC) and compensating for active clock edge shift. In an embodiment, the system includes at least one control circuit to receive DCC control signals and to output at least one first adjustment signal, at least one second adjustment signal, at least one first correction signal, and at least one second correction signal, at least one adjustment circuit to change a DC value of an input clock signal, at least one correction circuit to compensate for a shift of an active clock edge of the input clock signal, and where one of the at least one adjustment circuit and the at least one correction circuit is to receive the input clock signal and wherein one of the at least one adjustment circuit and the at least one correction circuit is to transmit a corrected output clock signal.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: July 16, 2019
    Assignee: International Business Machines Corporation
    Inventors: Michael Koch, Matthias Ringe, Andreas Arp, Fatih Cilek
  • Patent number: 10348278
    Abstract: An apparatus of performing a clock skew adjustment between at least first and second clock signals includes first and second skew sensors and a skew controller. The first skew sensor receives a third clock signal obtained by delaying the first clock signal by a first delay and a fourth clock signal obtained by delaying the second clock signal by a second delay, and generates first information based on the third and fourth clock signals. The second skew sensor receives a fifth clock signal obtained by delaying the first clock signal by a third delay and a sixth clock signal obtained by delaying the second clock signal by a fourth delay, and generates second information based on the fifth and sixth clock signals. Each of the first and second information varies depending on the clock skew. The skew controller performs the clock skew adjustment based on the first and second information.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: July 9, 2019
    Assignee: International Business Machines Corporation
    Inventors: Andreas Arp, Fatih Cilek, Andre Hertwig, Michael Koch, Matthias Ringe
  • Patent number: 10348279
    Abstract: Disclosed aspects relate to a clock distribution network of a synchronous logic device. The synchronous logic device comprises multiple sub-circuits belonging to different clock domains. The clock distribution network comprises a clock source operable for providing a global clock signal, at least one programmable delay line associated with a certain sub-circuit operable for generating a local clock signal for said sub-circuit by delaying the global clock signal or a signal derived therefrom and a global skew control circuit for managing clock skew between the local clock signals. The global skew control circuit is operable for managing clock skew between at least some local clock signals by regularly adjusting the delay caused by at least one programmable delay line when in a deskewing operating mode, and disabling adjusting the delays of the programmable delay lines when in a locked operating mode.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: July 9, 2019
    Assignee: International Business Machines Corporation
    Inventors: Andreas Arp, Fatih Cilek, Michael Koch, Matthias Ringe
  • Patent number: 10312892
    Abstract: A circuit for measuring a transition time of a digital signal may be provided. The circuit comprises a window detector comprising a comparator circuitry arranged for generating a first signal based on comparing said digital signal with a first reference voltage and for generating a second signal based on comparing said digital signal with a second reference voltage. Additionally, the circuit comprises a time-difference-to-digital converter operable for converting a delay between an edge of said first signal and an edge of said second signal into a digital value, said digital value characterizing said transition time of said digital signal.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: June 4, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Andreas Arp, Fatih Cilek, Michael V. Koch, Matthias Ringe
  • Patent number: 10263606
    Abstract: A circuit for measuring a transition time of a digital signal may be provided. The circuit comprises a window detector comprising a comparator circuitry arranged for generating a first signal based on comparing said digital signal with a first reference voltage and for generating a second signal based on comparing said digital signal with a second reference voltage. Additionally, the circuit comprises a time-difference-to-digital converter operable for converting a delay between an edge of said first signal and an edge of said second signal into a digital value, said digital value characterizing said transition time of said digital signal.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: April 16, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Andreas Arp, Fatih Cilek, Michael V. Koch, Matthias Ringe
  • Publication number: 20190097617
    Abstract: The present invention provides a system and method of correcting duty cycle (DC) and compensating for active clock edge shift. In an embodiment, the system includes at least one control circuit to receive DCC control signals and to output at least one first adjustment signal, at least one second adjustment signal, at least one first correction signal, and at least one second correction signal, at least one adjustment circuit to change a DC value of an input clock signal, at least one correction circuit to compensate for a shift of an active clock edge of the input clock signal, and where one of the at least one adjustment circuit and the at least one correction circuit is to receive the input clock signal and wherein one of the at least one adjustment circuit and the at least one correction circuit is to transmit a corrected output clock signal.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 28, 2019
    Inventors: Michael Koch, Matthias Ringe, Andreas Arp, Fatih Cilek
  • Publication number: 20190097618
    Abstract: The present invention provides a system and method of correcting duty cycle (DC) and compensating for active clock edge shift. In an embodiment, the system includes at least one control circuit to receive DCC control signals and to output at least one first adjustment signal, at least one second adjustment signal, at least one first correction signal, and at least one second correction signal, at least one adjustment circuit to change a DC value of an input clock signal, at least one correction circuit to compensate for a shift of an active clock edge of the input clock signal, and where one of the at least one adjustment circuit and the at least one correction circuit is to receive the input clock signal and wherein one of the at least one adjustment circuit and the at least one correction circuit is to transmit a corrected output clock signal.
    Type: Application
    Filed: December 27, 2017
    Publication date: March 28, 2019
    Inventors: Michael Koch, Matthias Ringe, Andreas Arp, Fatih Cilek
  • Publication number: 20180331676
    Abstract: Disclosed aspects relate to a clock distribution network of a synchronous logic device. The synchronous logic device comprises multiple sub-circuits belonging to different clock domains. The clock distribution network comprises a clock source operable for providing a global clock signal, at least one programmable delay line associated with a certain sub-circuit operable for generating a local clock signal for said sub-circuit by delaying the global clock signal or a signal derived therefrom and a global skew control circuit for managing clock skew between the local clock signals. The global skew control circuit is operable for managing clock skew between at least some local clock signals by regularly adjusting the delay caused by at least one programmable delay line when in a deskewing operating mode, and disabling adjusting the delays of the programmable delay lines when in a locked operating mode.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 15, 2018
    Inventors: Andreas Arp, Fatih Cilek, Michael Koch, Matthias Ringe
  • Publication number: 20180329448
    Abstract: Disclosed aspects relate to a clock distribution network of a synchronous logic device. The synchronous logic device has sub-circuits having different clock domains. The clock domains form a hierarchical structure. The clock distribution network has a clock source to provide a global clock signal. A programmable delay line associated with a sub-circuit generates a local clock signal for the sub-circuit by delaying the signal. A global skew control circuit can manage clock skew between the local clock signals. The global skew control circuit may adjust a delay, determine initial operations for the delay lines, verify whether it is possible to perform the initial operations, and perform a correction operation. The correction operation can include correcting the control commands such that the corrected commands lead to the same change of skew adjustment between the local clocks.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 15, 2018
    Inventors: Andreas Arp, Andre Hertwig, Michael Koch, Matthias Ringe
  • Publication number: 20180323773
    Abstract: An apparatus of performing a clock skew adjustment between at least first and second clock signals includes first and second skew sensors and a skew controller. The first skew sensor receives a third clock signal obtained by delaying the first clock signal by a first delay and a fourth clock signal obtained by delaying the second clock signal by a second delay, and generates first information based on the third and fourth clock signals. The second skew sensor receives a fifth clock signal obtained by delaying the first clock signal by a third delay and a sixth clock signal obtained by delaying the second clock signal by a fourth delay, and generates second information based on the fifth and sixth clock signals. Each of the first and second information varies depending on the clock skew. The skew controller performs the clock skew adjustment based on the first and second information.
    Type: Application
    Filed: July 17, 2018
    Publication date: November 8, 2018
    Inventors: Andreas Arp, Fatih Cilek, Andre Hertwig, Michael Koch, Matthias Ringe