Patents by Inventor Andreas Krauss

Andreas Krauss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190357844
    Abstract: A method is for determining a patient weight and/or a body mass index of a patient. The method includes acquiring image data containing depth information of the patient; generating a surface model of the patient based upon the image data acquired; determining density information or X-ray attenuation information of at least part of the patient; and determining at least one of the total patient weight and the body mass index of the patient using the surface model generated and the density information or X-ray attenuation information determined.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 28, 2019
    Applicant: Siemens Healthcare GmbH
    Inventors: Rainer RAUPACH, Andreas KRAUSS, Andreas WIMMER
  • Patent number: 10475538
    Abstract: A system and method includes operation of a generation network to generate first generated computed tomography data based on a first instance of surface data, determination of a generation loss based on the first generated computed tomography data and on a first instance of computed tomography data which corresponds to the first instance of surface data, operation of a discriminator network to discriminate between the first generated computed tomography data and the first instance of computed tomography data, determination of a discriminator loss based on the discrimination between the first generated computed tomography data and the first instance of computed tomography data, determination of discriminator gradients of the discriminator network based on the discriminator loss, and updating of weights of the generation network based on the generation loss and the discriminator gradients.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: November 12, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Yifan Wu, Vivek Kumar Singh, Kai Ma, Terrence Chen, Birgi Tamersoy, Jiangping Wang, Andreas Krauss
  • Patent number: 10430551
    Abstract: In scan data retrieval, a mesh is fit (32) to surface data of a current patient, such as data from an optical or depth sensor (18). Meshes are also fit (48) to medical scan data, such as fitting (48) to skin surface segments of computed tomography data. The meshes or parameters derived from the meshes may be more efficiently compared (34) to identify (36) a previous patient with similar body shape and/or size. The scan configuration (38) for that patient, or that patient as altered to account for differences from the current patient, is used. In some embodiments, the parameter vector used for searching (34) includes principle component analysis coefficients. In further embodiments, the principle component analysis coefficients may be projected to a more discriminative space using metric learning.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: October 1, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Jiangping Wang, Kai Ma, Vivek Singh, Mingqing Chen, Yao-Jen Chang, Shaohua Kevin Zhou, Terrence Chen, Andreas Krauss
  • Patent number: 10388037
    Abstract: According to an embodiment of the application, a method is provided for selecting an algorithm for correcting at least one image artifact in an image data record acquired by a medical imaging system and representing at least one region of interest of a subject under examination. The method includes identifying from the image data record at least one object element causing the image artifact and lying inside the region of interest of the subject under examination; determining from the image data record at least one characteristic describing the object element; determining an artifact correction algorithm on the basis of the at least one characteristic; and applying the artifact correction algorithm to the image data record. An embodiment of the application also provides a corresponding data processing facility and a medical imaging system.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: August 20, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Stephan Arens, Roland Barthel, Andreas Krauss, Gerhard Lechsel, Rainer Raupach, Niklas Rehfeld
  • Publication number: 20190214135
    Abstract: A system and method includes operation of a generation network to generate first generated computed tomography data based on a first instance of surface data, determination of a generation loss based on the first generated computed tomography data and on a first instance of computed tomography data which corresponds to the first instance of surface data, operation of a discriminator network to discriminate between the first generated computed tomography data and the first instance of computed tomography data, determination of a discriminator loss based on the discrimination between the first generated computed tomography data and the first instance of computed tomography data, determination of discriminator gradients of the discriminator network based on the discriminator loss, and updating of weights of the generation network based on the generation loss and the discriminator gradients.
    Type: Application
    Filed: January 11, 2018
    Publication date: July 11, 2019
    Inventors: Yifan Wu, Vivek Kumar Singh, Kai Ma, Terrence Chen, Birgi Tamersoy, Jiangping Wang, Andreas Krauss
  • Patent number: 10315917
    Abstract: A micromechanical sensor device and a corresponding manufacturing method. The micromechanical sensor device is equipped with a substrate which includes a diaphragm area, multiple sensor layer areas being formed on the diaphragm area, which have a particular structured sensor layer; and a particular electrode device, via which the sensor layer areas are electrically connectable outside of the diaphragm area, the sensor layer areas being structured in such a way that they have length and width dimensions of a magnitude between 1 and 10 micrometers.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: June 11, 2019
    Assignee: ROBERT BOSCH GMBH
    Inventors: Andreas Krauss, Elisabeth Preiss
  • Patent number: 10228338
    Abstract: A measuring device for determining a gas concentration includes a gas-sensitive element, a sensing device, a stimulation unit, and a processing unit. The gas-sensitive element is configured to absorb a gas. The sensing device is configured to determine a parameter of the gas-sensitive element in a predetermined time period, where the parameter depends on an absorbed quantity of the gas. The stimulation unit is configured to stimulate the gas-sensitive element and accelerate desorption of the gas out of the gas-sensitive element. The processing unit is configured to determine a rate of change of the parameter, to control the stimulation such that a concentration of the gas in the gas-sensitive element lies outside of an equilibrium state, and to determine the gas concentration based on the rate of change.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: March 12, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Andreas Petersen, Andreas Krauss, Michael Badeja
  • Patent number: 10217926
    Abstract: A method for producing a multi-layer electrode system includes providing a carrier substrate having a recess in a top side of the carrier substrate. At least one wall of the recess is inclined in relation to a bottom side of the carrier substrate, which is opposite to the top side. The method also includes applying a multi-layer stack, which includes at least a first electrode layer, a second electrode layer, and a piezoelectric layer arranged between the first electrode layer and the second electrode layer, to the top side of the carrier substrate. At least the wall and a bottom of the recess are covered by at least a portion of the multi-layer stack.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: February 26, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Tjalf Pirk, Andreas Krauss, Friedjof Heuck, Stefan Leidich, Christoph Schelling
  • Publication number: 20190057521
    Abstract: For topogram predication from surface data, a sensor captures the outside surface of a patient. A generative adversarial network (GAN) generates the topogram representing an interior organ based on the outside surface of the patient. To further adapt to specific patients, internal landmarks are used in the topogram prediction. The topogram generated by one generator of the GAN may be altered based on landmarks generated by another generator.
    Type: Application
    Filed: July 20, 2018
    Publication date: February 21, 2019
    Inventors: Brian Teixeira, Vivek Kumar Singh, Birgi Tamersoy, Terrence Chen, Kai Ma, Andreas Krauss
  • Publication number: 20190057515
    Abstract: Machine learning is used to train a network to predict the location of an internal body marker from surface data. A depth image or other image of the surface of the patient is used to determine the locations of anatomical landmarks. The training may use a loss function that includes a term to limit failure to predict a landmark and/or off-centering of the landmark. The landmarks may then be used to configure medical scanning and/or for diagnosis.
    Type: Application
    Filed: August 7, 2018
    Publication date: February 21, 2019
    Inventors: Brian Teixeira, Vivek Kumar Singh, Birgi Tamersoy, Terrence Chen, Kai Ma, Andreas Krauss, Andreas Wimmer
  • Publication number: 20180346327
    Abstract: At least one semiconductor component is packaged by covering at least one partial surface of the at least one semiconductor component with at least one chemically or physically dissoluble sacrificial material; surrounding the at least one semiconductor component at least partially with a photoablatable packaging material; exposing the sacrificial material on the at least one partial surface of the at least one semiconductor component at least partially by forming at least one trench through at least the packaging material using a light beam; and exposing the at least one partial surface of the at least one semiconductor component at least partially by at least partially removing the previously exposed sacrificial material using a chemical or physical removal method to which the packaging material has a higher resistance than the sacrificial material.
    Type: Application
    Filed: November 22, 2016
    Publication date: December 6, 2018
    Inventors: Andreas Krauss, Nicola Mingirulli, Robert Bonasewicz
  • Publication number: 20180228460
    Abstract: A method for controlling a scanner comprises: sensing an outer surface of a body of a subject to collect body surface data, using machine learning to predict a surface of an internal organ of the subject based on the body surface data, and controlling the scanner based on the predicted surface of the internal organ.
    Type: Application
    Filed: January 30, 2018
    Publication date: August 16, 2018
    Inventors: Vivek Kumar Singh, Andreas Krauss, Birgi Tamersoy, Terrence Chen, Kai Ma
  • Publication number: 20180217287
    Abstract: The invention relates to a locating-device probe assembly including a plurality of non-magnetic hollow profile segments which are joinable to form a probe assembly, wherein at least two sensors are installed at a distance in the hollow profile segments, wherein the hollow profile segments include a base profile element made from telescoping partial profile elements that are retractable into and extensible from the base profile element at both ends, wherein at least one respective sensor is located in an end segment of each outermost partial profile element of the partial profiled elements and a cross-sections of the partial profile elements and of the base profile element have a cross-sectional area that is not circular or rotationally symmetrical.
    Type: Application
    Filed: January 25, 2016
    Publication date: August 2, 2018
    Inventors: Ingolf Müller, Andreas Krauss
  • Publication number: 20180194617
    Abstract: A micromechanical sensor device and a corresponding manufacturing method. The micromechanical sensor device is equipped with a substrate which includes a diaphragm area, multiple sensor layer areas being formed on the diaphragm area, which have a particular structured sensor layer; and a particular electrode device, via which the sensor layer areas are electrically connectable outside of the diaphragm area, the sensor layer areas being structured in such a way that they have length and width dimensions of a magnitude between 1 and 10 micrometers.
    Type: Application
    Filed: January 8, 2018
    Publication date: July 12, 2018
    Inventors: Andreas Krauss, Elisabeth Preiss
  • Patent number: 10004465
    Abstract: A method for determining a tube current profile for the recording of at least one X-ray image of body region of a patient with an X-ray image recording device, a corresponding computer program, a machine-readable data carrier and an X-ray image recording device are disclosed. The method includes acquisition of an image recorded via an optical sensor wherein the image has a field of view including at least the body region of the patient to be depicted by way of an X-ray image; determination of at least one piece of patient-specific, body-related information for the patient from the image; determination of an X-ray attenuation distribution of the patient at least for the body region to be depicted by way of an X-ray image with reference to the at least one piece of patient-specific, body-related information; and determination of the tube current profile with reference to the X-ray attenuation distribution determined.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: June 26, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Andreas Krauss, Rainer Raupach, Bernhard Schmidt
  • Patent number: 9995593
    Abstract: A sensor array and a method are provided for operating a sensor array with a first sensor and a second sensor, the second sensor being designed for an operation at an ambient temperature, the first sensor representing a heated sensor, which is designed for being operated at an operating temperature that is above the ambient temperature, the first and the second sensor being connected to each other via a carrier, the carrier bringing about thermal coupling between the first and the second sensor, the first sensor being heated to the operating temperature during a first phase, and a measurement being carried out by the first sensor during the first phase, the heating being switched off or at least being reduced in a second phase, and a measurement being carried out by the second sensor during the second phase, an increased temperature of the second sensor as a result of the heating during the first phase being taken into account when evaluating the measurement of the second sensor.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: June 12, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Michael Badeja, Andreas Krauss, Richard Fix
  • Patent number: 9941507
    Abstract: A method for production of a thin-film battery includes providing a mount structure, applying of a first unmasked flow of a first electrode material to the mount structure in order to form a first electrode layer, applying a second unmasked flow of a battery material in order to form a battery layer, and applying a third unmasked flow of a second electrode material in order to form a second electrode layer. The applying steps are repeated in order to produce a thin-film battery which consists of a plurality of first electrode layers, a plurality of battery layers, and a plurality of second electrode layers.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: April 10, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Tjalf Pirk, Andreas Krauss, Thomas Teuschel, Laura Bohne
  • Publication number: 20180031507
    Abstract: A gas sensor, having: a substrate; a heatable membrane configured on a substrate front side of the substrate; at least three electrodes disposed on a membrane surface of the membrane; a first coating configured on an area of the membrane surface, at least two of the at least three electrodes contacting the first coating; a second coating configured on the first coating and on an area of the membrane surface, at least two of the at least three electrodes contacting the second coating, and at least one of the at least two electrodes that contact the second coating being different from the at least two electrodes that contact the first coating.
    Type: Application
    Filed: January 13, 2016
    Publication date: February 1, 2018
    Inventor: Andreas Krauss
  • Publication number: 20170249423
    Abstract: In scan data retrieval, a mesh is fit (32) to surface data of a current patient, such as data from an optical or depth sensor (18). Meshes are also fit (48) to medical scan data, such as fitting (48) to skin surface segments of computed tomography data. The meshes or parameters derived from the meshes may be more efficiently compared (34) to identify (36) a previous patient with similar body shape and/or size. The scan configuration (38) for that patient, or that patient as altered to account for differences from the current patient, is used. In some embodiments, the parameter vector used for searching (34) includes principle component analysis coefficients. In further embodiments, the principle component analysis coefficients may be projected to a more discriminative space using metric learning.
    Type: Application
    Filed: November 6, 2015
    Publication date: August 31, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Jiangping Wang, Kai Ma, Vivek Singh, Mingqing Chen, Yao-Jen Chang, Shaohua Kevin Zhou, Terrence Chen, Andreas Krauss
  • Publication number: 20170236309
    Abstract: According to an embodiment of the application, a method is provided for selecting an algorithm for correcting at least one image artifact in an image data record acquired by a medical imaging system and representing at least one region of interest of a subject under examination. The method includes identifying from the image data record at least one object element causing the image artifact and lying inside the region of interest of the subject under examination; determining from the image data record at least one characteristic describing the object element; determining an artifact correction algorithm on the basis of the at least one characteristic; and applying the artifact correction algorithm to the image data record. An embodiment of the application also provides a corresponding data processing facility and a medical imaging system.
    Type: Application
    Filed: February 1, 2017
    Publication date: August 17, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Stephan ARENS, Roland BARTHEL, Andreas KRAUSS, Gerhard LECHSEL, Rainer RAUPACH, Niklas REHFELD