Patents by Inventor Andreas Thust

Andreas Thust has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9767072
    Abstract: Methods for determining the transfer function of a signal-processing system that do not require a known input signal. The methods are based on two representations 1(x) and I2(x) of an object, which the system has produced from differently scaled input signals originating from the object, or from a representation I1(x) of a first object and from a representation I2(x) of an object that is geometrically similar thereto but has been scaled differently. The representations are either given or are produced at the start of the method. According to the invention, the representations are transformed into a working space, and sections that relate to the same region of the object are selected in each case. The quotient of the functions corresponding to these two sections in the working space from which the unknown input signal comes makes it possible to clearly determine the transfer function sought. Various methods are indicated for this determination.
    Type: Grant
    Filed: April 21, 2012
    Date of Patent: September 19, 2017
    Assignee: Forschungszentrum Juelich GmbH
    Inventor: Andreas Thust
  • Patent number: 9076630
    Abstract: An electron microscope and a method for measuring the defocus spread or the limiting resolution of an electron microscope takes advantage of the fact that, in the case of tilted illumination, any aberration that may be present and the defocus spread of the electron microscope anisotropically change the intensity distribution in the diffractogram. In particular, the envelope of the diffractogram is anisotropically narrowed. If both the tilt of the electron beam and any aberration that may be present are known, and the focus distribution is assumed to be Gaussian-shaped, the defocus spread of the electron microscope is the only parameter still unknown that influences the anisotropic changes in intensity distribution. Quantitative conclusions as to the defocus spread can thus be drawn from the changes. However, the focus distribution can also be determined from the anisotropic narrowing without the use of a model, and without a priori assumptions about the shape thereof.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: July 7, 2015
    Assignee: Forschungszentrum Juelich GmbH
    Inventors: Andreas Thust, Juri Barthel
  • Publication number: 20140108476
    Abstract: Methods for determining the transfer function of a signal-processing system that do not require a known input signal. The methods are based on two representations 1(x) and I2(x) of an object, which the system has produced from differently scaled input signals originating from the object, or from a representation I1(x) of a first object and from a representation I2(x) of an object that is geometrically similar thereto but has been scaled differently. The representations are either given or are produced at the start of the method. According to the invention, the representations are transformed into a working space, and sections that relate to the same region of the object are selected in each case. The quotient of the functions corresponding to these two sections in the working space from which the unknown input signal comes makes it possible to clearly determine the transfer function sought. Various methods are indicated for this determination.
    Type: Application
    Filed: April 21, 2012
    Publication date: April 17, 2014
    Inventor: Andreas Thust
  • Patent number: 8351710
    Abstract: Disclosed is a method for measuring the similarity of two-dimensional images, at least one image exhibiting an additional signal, the location dependence or symmetry properties of which are known at least approximately. The images are partitioned into mutually identical subimages such that the extension of at least one subimage in the direction of the gradient of the additional signal is smaller than the extension of this subimage in the direction perpendicular thereto. The subimages are compared separately, and the results of all comparisons are combined to form the measurement result for similarity. As a result, the method becomes insensitive to variations in the additional signal. The method is particularly suited for the determination of defocusing and astigmatism of an electron-microscopic image. For this purpose, it is important to compare the similarity of an experimentally measured image to simulated images, which were generated using defined defocusing and astigmatism values.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: January 8, 2013
    Assignee: Forschungszentrum Juelich GmbH
    Inventors: Andreas Thust, Juri Barthel
  • Publication number: 20100032565
    Abstract: An electron microscope and a method for measuring the defocus spread or the limiting resolution of an electron microscope takes advantage of the fact that, in the case of tilted illumination, any aberration that may be present and the defocus spread of the electron microscope anisotropically change the intensity distribution in the diffractogram. In particular, the envelope of the diffractogram is anisotropically narrowed. If both the tilt of the electron beam and any aberration that may be present are known, and the focus distribution is assumed to be Gaussian-shaped, the defocus spread of the electron microscope is the only parameter still unknown that influences the anisotropic changes in intensity distribution. Quantitative conclusions as to the defocus spread can thus be drawn from the changes. However, the focus distribution can also be determined from the anisotropic narrowing without the use of a model, and without a priori assumptions about the shape thereof.
    Type: Application
    Filed: December 13, 2007
    Publication date: February 11, 2010
    Inventors: Andreas Thust, Juri Barthel
  • Publication number: 20090268969
    Abstract: Disclosed is a method for measuring the similarity of two-dimensional images, at least one image exhibiting an additional signal, the location dependence or symmetry properties of which are known at least approximately. The images are partitioned into mutually identical subimages such that the extension of at least one subimage in the direction of the gradient of the additional signal is smaller than the extension of this subimage in the direction perpendicular thereto. The subimages are compared separately, and the results of all comparisons are combined to form the measurement result for similarity. As a result, the method becomes insensitive to variations in the additional signal. The method is particularly suited for the determination of defocusing and astigmatism of an electron-microscopic image. For this purpose, it is important to compare the similarity of an experimentally measured image to simulated images, which were generated using defined defocusing and astigmatism values.
    Type: Application
    Filed: July 25, 2007
    Publication date: October 29, 2009
    Applicant: Forschungszentrum Juelich GmbH
    Inventors: Andreas Thust, Juri Barthel