Patents by Inventor Andrei Dorofeev

Andrei Dorofeev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11809256
    Abstract: Embodiments are presented herein of, inter alia, systems, devices, and associated methods for allocating and distributing power management budgets for classes of tasks being executed by a computer system, based on thermal feedback loops. Specifically, multiple quality-of-service (QoS) tiers may be defined, and each QoS tier may be allocated power based on a different set of thermal feedback loops. QoS tiers including tasks that are invisible to the user may be mitigated more aggressively than QoS tiers including tasks that are visibly supporting user operations.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: November 7, 2023
    Assignee: Apple Inc.
    Inventors: James S. Ismail, Bryan R. Hinch, Evan M. Hoke, Andrei Dorofeev, Shirin Dadashi, Mohsen Heidarinejad, Reza Arastoo
  • Patent number: 11709748
    Abstract: A device implementing adaptive memory performance control by thread group may include a memory and at least one processor. The at least one processor may be configured to execute a group of threads on one or more cores. The at least one processor may be configured to monitor a plurality of metrics corresponding to the group of threads executing on one or more cores. The metrics may include, for example, a core stall ratio and/or a power metric. The at least one processor may be configured to determine, based at least in part on the plurality of metrics, a memory bandwidth constraint with respect to the group of threads executing on the one or more cores. The at least one processor may be configured to, in response to determining the memory bandwidth constraint, increase a memory performance corresponding to the group of threads executing on the one or more cores.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: July 25, 2023
    Assignee: Apple Inc.
    Inventors: John G. Dorsey, Andrei Dorofeev, Keith Cox
  • Patent number: 11579934
    Abstract: Systems and methods are disclosed for scheduling threads on a processor that has at least two different core types, such as an asymmetric multiprocessing system. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers for the thread group. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Deferred interrupts can be used to increase performance.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: February 14, 2023
    Assignee: Apple Inc.
    Inventors: Jeremy C. Andrus, John G. Dorsey, James M. Magee, Daniel A. Chimene, Cyril de la Cropte de Chanterac, Bryan R. Hinch, Aditya Venkataraman, Andrei Dorofeev, Nigel R. Gamble, Russell A. Blaine, Constantin Pistol, James S. Ismail
  • Patent number: 11360820
    Abstract: Systems and methods are disclosed for scheduling threads on an asymmetric multiprocessing system having multiple core types. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Metrics for workloads offloaded to co-processors can be tracked and integrated into metrics for the offloading thread group.
    Type: Grant
    Filed: June 2, 2018
    Date of Patent: June 14, 2022
    Assignee: Apple Inc.
    Inventors: John G. Dorsey, Daniel A. Chimene, Andrei Dorofeev, Bryan R. Hinch, Evan M. Hoke, Aditya Venkataraman
  • Publication number: 20220147132
    Abstract: Embodiments are presented herein of, inter alia, systems, devices, and associated methods for allocating and distributing power management budgets for classes of tasks being executed by a computer system, based on thermal feedback loops. Specifically, multiple quality-of-service (QoS) tiers may be defined, and each QoS tier may be allocated power based on a different set of thermal feedback loops. QoS tiers including tasks that are invisible to the user may be mitigated more aggressively than QoS tiers including tasks that are visibly supporting user operations.
    Type: Application
    Filed: November 8, 2021
    Publication date: May 12, 2022
    Inventors: James S. Ismail, Bryan R. Hinch, Evan M. Hoke, Andrei Dorofeev, Shirin Dadashi, Mohsen Heidarinejad, Reza Araston
  • Patent number: 11231966
    Abstract: Systems and methods are disclosed for scheduling threads on an asymmetric multiprocessing system having multiple core types. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Metrics for workloads offloaded to co-processors can be tracked and integrated into metrics for the offloading thread group.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: January 25, 2022
    Assignee: Apple Inc.
    Inventors: John G. Dorsey, Daniel A. Chimene, Andrei Dorofeev, Bryan R. Hinch, Evan M. Hoke, Aditya Venkataraman
  • Publication number: 20210318909
    Abstract: Systems and methods are disclosed for scheduling threads on a processor that has at least two different core types, such as an asymmetric multiprocessing system. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers for the thread group. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Deferred interrupts can be used to increase performance.
    Type: Application
    Filed: March 22, 2021
    Publication date: October 14, 2021
    Inventors: Jeremy C. Andrus, John G. Dorsey, James M. Magee, Daniel A. Chimene, Cyril de la Cropte de Chanterac, Bryan R. Hinch, Aditya Venkataraman, Andrei Dorofeev, Nigel R. Gamble, Russell A. Blaine, Constantin Pistol, James S. Ismail
  • Patent number: 11080095
    Abstract: Systems and methods are disclosed for scheduling threads on a processor that has at least two different core types, such as an asymmetric multiprocessing system. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers for the thread group. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Deferred interrupts can be used to increase performance.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: August 3, 2021
    Assignee: Apple Inc.
    Inventors: Jeremy C. Andrus, John G. Dorsey, James M. Magee, Daniel A. Chimene, Cyril de la Cropte de Chanterac, Bryan R. Hinch, Aditya Venkataraman, Andrei Dorofeev, Nigel R. Gamble, Russell A. Blaine, Constantin Pistol
  • Publication number: 20210157700
    Abstract: A device implementing adaptive memory performance control by thread group may include a memory and at least one processor. The at least one processor may be configured to execute a group of threads on one or more cores. The at least one processor may be configured to monitor a plurality of metrics corresponding to the group of threads executing on one or more cores. The metrics may include, for example, a core stall ratio and/or a power metric. The at least one processor may be configured to determine, based at least in part on the plurality of metrics, a memory bandwidth constraint with respect to the group of threads executing on the one or more cores. The at least one processor may be configured to, in response to determining the memory bandwidth constraint, increase a memory performance corresponding to the group of threads executing on the one or more cores.
    Type: Application
    Filed: November 13, 2020
    Publication date: May 27, 2021
    Inventors: John G. DORSEY, Andrei DOROFEEV, Keith COX
  • Patent number: 10956220
    Abstract: Systems and methods are disclosed for scheduling threads on a processor that has at least two different core types, such as an asymmetric multiprocessing system. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers for the thread group. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Deferred interrupts can be used to increase performance.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: March 23, 2021
    Assignee: Apple Inc.
    Inventors: Jeremy C. Andrus, John G. Dorsey, James M. Magee, Daniel A. Chimene, Cyril de la Cropte de Chanterac, Bryan R. Hinch, Aditya Venkataraman, Andrei Dorofeev, Nigel R. Gamble, Russell A. Blaine, Constantin Pistol, James S. Ismail
  • Patent number: 10942850
    Abstract: A processing system can include a plurality of processing clusters. Each processing cluster can include a plurality of processor cores and a last level cache. Each processor core can include one or more dedicated caches and a plurality of counters. The plurality of counters may be configured to count different types of cache fills. The plurality of counters may be configured to count different types of cache fills, including at least one counter configured to count total cache fills and at least one counter configured to count off-cluster cache fills. Off-cluster cache fills can include at least one of cross-cluster cache fills and cache fills from system memory. The processing system can further include one or more controllers configured to control performance of one or more of the clusters, the processor cores, the fabric, and the memory responsive to cache fill metrics derived from the plurality of counters.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: March 9, 2021
    Assignee: Apple Inc.
    Inventors: John G. Dorsey, Aditya Venkataraman, Bryan R. Hinch, Daniel A. Chimene, Andrei Dorofeev, Constantin Pistol
  • Publication number: 20210019258
    Abstract: A processing system can include a plurality of processing clusters. Each processing cluster can include a plurality of processor cores and a last level cache. Each processor core can include one or more dedicated caches and a plurality of counters. The plurality of counters may be configured to count different types of cache fills. The plurality of counters may be configured to count different types of cache fills, including at least one counter configured to count total cache fills and at least one counter configured to count off-cluster cache fills. Off-cluster cache fills can include at least one of cross-cluster cache fills and cache fills from system memory. The processing system can further include one or more controllers configured to control performance of one or more of the clusters, the processor cores, the fabric, and the memory responsive to cache fill metrics derived from the plurality of counters.
    Type: Application
    Filed: July 16, 2019
    Publication date: January 21, 2021
    Inventors: John G. Dorsey, Aditya Venkataraman, Bryan R. Hinch, Daniel A. Chimene, Andrei Dorofeev, Constantin Pistol
  • Patent number: 10884811
    Abstract: Systems and methods are disclosed for scheduling threads on a processor that has at least two different core types, such as an asymmetric multiprocessing system. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers for the thread group. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Deferred interrupts can be used to increase performance.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: January 5, 2021
    Assignee: Apple Inc.
    Inventors: Jeremy C. Andrus, John G. Dorsey, James M. Magee, Daniel A. Chimene, Cyril de la Cropte de Chanterac, Bryan R. Hinch, Aditya Venkataraman, Andrei Dorofeev, Nigel R. Gamble, Russell A. Blaine, Constantin Pistol
  • Patent number: 10448338
    Abstract: An example computer-implemented method includes determining, by an electronic device, that the electronic device has not received a user activity for an interval of time. The method also includes determining, by the electronic device, a contextual state of the electronic device, and adapting, by the electronic device, a sleep delay value based on the determined contextual state of the electronic device. The method also includes determining that the interval of time has exceeded the sleep delay value, and responsive to determining that the interval of time has exceeded the sleep delay value, transitioning, by the electronic device, from a first power state to a second power state, where the first power state is higher or lower than the second power state.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: October 15, 2019
    Assignee: Apple Inc.
    Inventors: Gaurav Kapoor, Andrei Dorofeev, Varaprasad V. Lingutla, Cyril de la Cropte de Chanterac
  • Patent number: 10417054
    Abstract: Systems and methods are disclosed for scheduling threads on a processor that has at least two different core types, such as an asymmetric multiprocessing system. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers for the thread group. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Deferred interrupts can be used to increase performance.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: September 17, 2019
    Assignee: Apple Inc.
    Inventors: Jeremy C. Andrus, John G. Dorsey, James M. Magee, Daniel A. Chimene, Cyril de la Cropte de Chanterac, Bryan R. Hinch, Aditya Venkataraman, Andrei Dorofeev, Nigel R. Gamble, Russell A. Blaine, Constantin Pistol
  • Publication number: 20190034238
    Abstract: Systems and methods are disclosed for scheduling threads on an asymmetric multiprocessing system having multiple core types. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Metrics for workloads offloaded to co-processors can be tracked and integrated into metrics for the offloading thread group.
    Type: Application
    Filed: September 28, 2018
    Publication date: January 31, 2019
    Inventors: JOHN G. DORSEY, DANIEL A. CHIMENE, ANDREI DOROFEEV, BRYAN R. HINCH, EVAN M. HOKE, ADITYA VENKATARAMAN
  • Publication number: 20180349186
    Abstract: Systems and methods are disclosed for scheduling threads on a processor that has at least two different core types, such as an asymmetric multiprocessing system. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers for the thread group. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Deferred interrupts can be used to increase performance.
    Type: Application
    Filed: January 12, 2018
    Publication date: December 6, 2018
    Inventors: Jeremy C. Andrus, John G. Dorsey, James M. Magee, Daniel A. Chimene, Cyril de la Cropte de Chanterac, Bryan R. Hinch, Aditya Venkataraman, Andrei Dorofeev, Nigel R. Gamble, Russell A. Blaine, Constantin Pistol
  • Publication number: 20180349175
    Abstract: Systems and methods are disclosed for scheduling threads on a processor that has at least two different core types, such as an asymmetric multiprocessing system. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers for the thread group. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Deferred interrupts can be used to increase performance.
    Type: Application
    Filed: January 12, 2018
    Publication date: December 6, 2018
    Inventors: Jeremy C. Andrus, John G. Dorsey, James M. Magee, Daniel A. Chimene, Cyril de la Cropte de Chanterac, Bryan R. Hinch, Aditya Venkataraman, Andrei Dorofeev, Nigel R. Gamble, Russell A. Blaine, Constantin Pistol, James S. Ismail
  • Publication number: 20180349176
    Abstract: Systems and methods are disclosed for scheduling threads on a processor that has at least two different core types, such as an asymmetric multiprocessing system. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers for the thread group. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Deferred interrupts can be used to increase performance.
    Type: Application
    Filed: January 12, 2018
    Publication date: December 6, 2018
    Inventors: Jeremy C. Andrus, John G. Dorsey, James M. Magee, Daniel A. Chimene, Cyril de la Cropte de Chanterac, Bryan R. Hinch, Aditya Venkataraman, Andrei Dorofeev, Nigel R. Gamble, Russell A. Blaine, Constantin Pistol
  • Publication number: 20180349191
    Abstract: Systems and methods are disclosed for scheduling threads on an asymmetric multiprocessing system having multiple core types. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Metrics for workloads offloaded to co-processors can be tracked and integrated into metrics for the offloading thread group.
    Type: Application
    Filed: June 2, 2018
    Publication date: December 6, 2018
    Inventors: JOHN G. DORSEY, DANIEL A. CHIMENE, ANDREI DOROFEEV, BRYAN R. HINCH, EVAN M. HOKE, ADITYA VENKATARAMAN