Patents by Inventor Andrei Veldman

Andrei Veldman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180328868
    Abstract: Methods and systems for positioning a specimen and characterizing an x-ray beam incident onto the specimen in a Transmission, Small-Angle X-ray Scatterometry (T-SAXS) metrology system are described herein. A specimen positioning system locates a wafer vertically and actively positions the wafer in six degrees of freedom with respect to the x-ray illumination beam without attenuating the transmitted radiation. In some embodiments, a cylindrically shaped occlusion element is scanned across the illumination beam while the detected intensity of the transmitted flux is measured to precisely locate the beam center. In some other embodiments, a periodic calibration target is employed to precisely locate the beam center. The periodic calibration target includes one or more spatially defined zones having different periodic structures that diffract X-ray illumination light into distinct, measurable diffraction patterns.
    Type: Application
    Filed: May 9, 2018
    Publication date: November 15, 2018
    Inventors: Alexander Bykanov, Nikolay Artemiev, Joseph A. Di Regolo, Antonio Gellineau, Alexander Kuznetsov, Andrei Veldman, John Hench
  • Publication number: 20180112968
    Abstract: Methods and systems for evaluating the geometric characteristics of patterned structures are presented. More specifically, geometric structures generated by one or multiple patterning processes are measured by two or more metrology systems in accordance with a hybrid metrology methodology. A measurement result from one metrology system is communicated to at least one other metrology systems to increase the measurement performance of the receiving system. Similarly, a measurement result from the receiving metrology system is communicated back to the sending metrology system to increase the measurement performance of the sending system. In this manner, measurement results obtained from each metrology system are improved based on measurement results received from other cooperating metrology systems. In some examples, metrology capability is expanded to measure parameters of interest that were previously unmeasurable by each metrology system operating independently.
    Type: Application
    Filed: October 19, 2017
    Publication date: April 26, 2018
    Inventors: Boxue Chen, Andrei Veldman, Alexander Kuznetsov, Andrei V. Shchegrov
  • Publication number: 20180106735
    Abstract: Methods and systems for characterizing dimensions and material properties of semiconductor devices by full beam x-ray scatterometry are described herein. A full beam x-ray scatterometry measurement involves illuminating a sample with an X-ray beam and detecting the intensities of the resulting zero diffraction order and higher diffraction orders simultaneously for one or more angles of incidence relative to the sample. The simultaneous measurement of the direct beam and the scattered orders enables high throughput measurements with improved accuracy. The full beam x-ray scatterometry system includes one or more photon counting detectors with high dynamic range and thick, highly absorptive crystal substrates that absorb the direct beam with minimal parasitic backscattering.
    Type: Application
    Filed: January 30, 2017
    Publication date: April 19, 2018
    Inventors: Antonio Arion Gellineau, Thaddeus Gerard Dziura, John J. Hench, Andrei Veldman, Sergey Zalubovsky
  • Patent number: 9885962
    Abstract: Disclosed are apparatus and methods for determining overlay error in a semiconductor target. For illumination x-rays having at least one angle of incidence (AOI), a correlation model is obtained, and the correlation model correlates overlay error of a target with a modulation intensity parameter for each of one or more diffraction orders (or a continuous diffraction intensity distribution) for x-rays scattered from the target in response to the illumination x-rays. A first target is illuminated with illumination x-rays having the at least one AOI and x-rays that are scattered from the first target in response to the illumination x-rays are collected. An overlay error of the first target is determined based on the modulation intensity parameter of the x-rays collected from the first target for each of the one or more diffraction orders (or the continuous diffraction intensity distribution) and the correlation model.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: February 6, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei Veldman, Michael S. Bakeman, Andrei V. Shchegrov, Walter D. Mieher
  • Publication number: 20170016815
    Abstract: The system includes a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulses trains for use in multi-wavelength time-sequential optical metrology.
    Type: Application
    Filed: July 22, 2016
    Publication date: January 19, 2017
    Inventors: Andrei V. Shchegrov, Lawrence D. Rotter, David Y. Wang, Andrei Veldman, Kevin Peterlinz, Gregory Brady, Derrick A. Shaughnessy
  • Patent number: 9523800
    Abstract: A method for improving computation efficiency for diffraction signals in optical metrology is described. The method includes simulating a set of spatial harmonics orders for a grating structure. The set of spatial harmonics orders is truncated to provide a first truncated set of spatial harmonics orders based on a first pattern. The first truncated set of spatial harmonics orders is modified by an iterative process to provide a second truncated set of spatial harmonics orders based on a second pattern, the second pattern different from the first pattern. Finally, a simulated spectrum is provided based on the second truncated set of spatial harmonics orders.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: December 20, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei Veldman, John J. Hench
  • Publication number: 20160246285
    Abstract: Methods and systems for solving measurement models of complex device structures with reduced computational effort and memory requirements are presented. The computational efficiency of electromagnetic simulation algorithms based on truncated spatial harmonic series is improved for periodic targets that exhibit a fundamental spatial period and one or more approximate periods that are integer fractions of the fundamental spatial period. Spatial harmonics are classified according to each distinct period of the target exhibiting multiple periodicity. A distinct truncation order is selected for each group of spatial harmonics. This approach produces optimal, sparse truncation order sampling patterns, and ensures that only harmonics with significant contributions to the approximation of the target are selected for computation.
    Type: Application
    Filed: February 19, 2016
    Publication date: August 25, 2016
    Inventor: Andrei Veldman
  • Patent number: 9400246
    Abstract: The present invention may include a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulses trains for use in multi-wavelength time-sequential optical metrology.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: July 26, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei V. Shchegrov, Lawrence D. Rotter, David Y. Wang, Andrei Veldman, Kevin Peterlinz, Gregory Brady, Derrick Shaughnessy
  • Patent number: 9255877
    Abstract: Methods and systems for evaluating the capability of a measurement system to track measurement parameters through a given process window are presented herein. Performance evaluations include random perturbations, systematic perturbations, or both to effectively characterize the impact of model errors, metrology system imperfections, and calibration errors, among others. In some examples, metrology target parameters are predetermined as part of a Design of Experiments (DOE). Estimated values of the metrology target parameters are compared to the known DOE parameter values to determine the tracking capability of the particular measurement. In some examples, the measurement model is parameterized by principal components to reduce the number of degrees of freedom of the measurement model. In addition, exemplary methods and systems for optimizing the measurement capability of semiconductor metrology systems for metrology applications subject to process variations are presented.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: February 9, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei Veldman, Andrei V. Shchegrov, Gregory Brady, Thaddeus Gerard Dziura, Stilian Ivanov Pandev, Alexander Kuznetsov
  • Publication number: 20150117610
    Abstract: Disclosed are apparatus and methods for determining overlay error in a semiconductor target. For illumination x-rays having at least one angle of incidence (AOI), a correlation model is obtained, and the correlation model correlates overlay error of a target with a modulation intensity parameter for each of one or more diffraction orders (or a continuous diffraction intensity distribution) for x-rays scattered from the target in response to the illumination x-rays. A first target is illuminated with illumination x-rays having the at least one AOI and x-rays that are scattered from the first target in response to the illumination x-rays are collected. An overlay error of the first target is determined based on the modulation intensity parameter of the x-rays collected from the first target for each of the one or more diffraction orders (or the continuous diffraction intensity distribution) and the correlation model.
    Type: Application
    Filed: October 23, 2014
    Publication date: April 30, 2015
    Applicant: KLA-Tencor Corporation
    Inventors: Andrei Veldman, Michael S. Bakeman, Andrei V. Shchegrov, Walter D. Mieher
  • Publication number: 20140347666
    Abstract: Methods and systems for evaluating the capability of a measurement system to track measurement parameters through a given process window are presented herein. Performance evaluations include random perturbations, systematic perturbations, or both to effectively characterize the impact of model errors, metrology system imperfections, and calibration errors, among others. In some examples, metrology target parameters are predetermined as part of a Design of Experiments (DOE). Estimated values of the metrology target parameters are compared to the known DOE parameter values to determine the tracking capability of the particular measurement. In some examples, the measurement model is parameterized by principal components to reduce the number of degrees of freedom of the measurement model. In addition, exemplary methods and systems for optimizing the measurement capability of semiconductor metrology systems for metrology applications subject to process variations are presented.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 27, 2014
    Inventors: Andrei Veldman, Andrei V. Shchegrov, Gregory Brady, Thaddeus Gerard Dziura, Stilian Ivanov Pandev, Alexander Kuznetsov
  • Patent number: 8798966
    Abstract: One embodiment relates to a method of model-based optical metrology. An area of a geometrical structure of dispersive materials on a substrate is illuminated with polarized incident electromagnetic radiation using an illuminator of a scatterometer apparatus. Spectral components of the incident electromagnetic radiation reflected from the area are measured using a detector of the scatterometer apparatus. Using a computer for the scatterometer apparatus, parameter values are determined that minimize an objective function which represents a difference between the measured spectral components and computed spectral components based on a parameterized model of the geometrical structure. Steps for determining the parameter values that minimize the objective function include: computing a solution to state equations driven by a function representing the incident electromagnetic radiation, and computing a solution to an adjoint to the state equations. Other embodiments and features are also disclosed.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: August 5, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: John Hench, Daniel Wack, Edward Ratner, Yaoming Shi, Andrei Veldman
  • Patent number: 8760649
    Abstract: A novel technique for model-based metrology. A geometry of structure to be measured on a surface of a substrate is received. A tessellation of the geometry of the structure is produced. The tessellation is used to determine a vertical discretization and a horizontal discretization so as to generate a discrete model for the geometry, and scatterometry computations are performed using the discrete model. Other embodiments, aspects and features are also disclosed.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: June 24, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei Veldman, John J. Hench
  • Publication number: 20110288822
    Abstract: A method for improving computation efficiency for diffraction signals in optical metrology is described. The method includes simulating a set of spatial harmonics orders for a grating structure. The set of spatial harmonics orders is truncated to provide a first truncated set of spatial harmonics orders based on a first pattern. The first truncated set of spatial harmonics orders is modified by an iterative process to provide a second truncated set of spatial harmonics orders based on a second pattern, the second pattern different from the first pattern. Finally, a simulated spectrum is provided based on the second truncated set of spatial harmonics orders.
    Type: Application
    Filed: May 21, 2010
    Publication date: November 24, 2011
    Inventors: Andrei Veldman, John J. Hench
  • Patent number: 7826072
    Abstract: The present application discloses a method of model-based measurement of semiconductor device features using a scatterometer system. The method includes at least the following steps. A cost function is defined depending upon a plurality of variable parameters of the scatterometer system and upon a plurality of variable parameters for computer-implemented modeling to determine measurement results. Constraints are established for the plurality of variable parameters of the scatterometer system and for the plurality of variable parameters for the computer-implemented modeling. A computer-implemented optimization procedure is performed to determine an optimized global set of parameters, including both the variable parameters of the scatterometer system and the variable parameters for the computer-implemented modeling, which result in a minimal value of the cost function. Finally, the optimized global set of parameters is applied to configure the scatterometer system and the computer-implemented modeling.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: November 2, 2010
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Daniel C. Wack, Andrei Veldman, Edward R. Ratner, John Hench, Noah Bareket
  • Patent number: 7716003
    Abstract: The present application discloses a new technique which reduces the dimensionality of a feature model by re-use of data that has been obtained by a prior measurement. The data re-used from the prior measurement may range from parameters, such as geometrical dimensions, to more complex data that describe the electromagnetic scattering function of an underlying layer (for example, a local solution of the electric field properties).
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: May 11, 2010
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Daniel C. Wack, Andrei Veldman, Edward R. Ratner, John Hench, Noah Bareket
  • Patent number: 7480047
    Abstract: In an embodiment, a method of time-domain simulation for simulating scattering spectra is described. The method may provide for computing spatial derivatives including computing spectral derivatives in some portion of the domain and finite difference derivatives in some other portion of the domain; forming an equation for non-reflecting boundary conditions; and computing a time-stepping scheme using a high-order unconditionally stable computation method.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: January 20, 2009
    Assignee: KLA-Tencor Corporation
    Inventors: Edward Ratner, Andrei Veldman, Daniel Wack
  • Patent number: 6303931
    Abstract: A method for determining a profile quality grade of inspected feature in a resist. The feature includes side walls. The method includes the steps of acquiring by a metrology device a signal that originates from the feature and analyzing the acquired signal, including fitting a curve from among a family of curves to the acquired signal. The curve is subjected to the following constraint: it corresponds to a signal portion that originates from part of the bottom of the feature. The method further includes the step of determining the profile quality grade of the feature depending upon characteristics of the fitted curve.
    Type: Grant
    Filed: November 17, 1998
    Date of Patent: October 16, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Mina Menaker, Andrei Veldman