Patents by Inventor Andres Bryant

Andres Bryant has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120228709
    Abstract: Disclosed is an integrated circuit having an asymmetric FET as a power gate for an electronic circuit, which has at least two stacked symmetric field effect transistors. The asymmetric FET has an asymmetric halo configuration (i.e., a single source-side halo or a source-side halo with a higher dopant concentration than a drain-side halo) and an asymmetric source/drain extension configuration (i.e., the source extension can be overlapped to a greater extent by the gate structure than the drain extension and/or the source extension can have a higher dopant concentration than the drain extension). As a result, the asymmetric FET has a low off current. In operation, the asymmetric FET is turned off when the electronic circuit is placed in a standby state and, due to the low off current (Ioff), effectively reduces standby leakage current from the electronic circuit.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 13, 2012
    Applicant: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak
  • Publication number: 20120217585
    Abstract: A plurality of gate structures are formed on a substrate. Each of the gate structures includes a first gate electrode and source and drain regions. The first gate electrode is removed from each of the gate structures. A first photoresist is applied to block gate structures having source regions in a source-down direction. A first halo implantation is performed in gate structures having source regions in a source-up direction at a first angle. The first photoresist is removed. A second photoresist is applied to block gate structures having source regions in a source-up direction. A second halo implantation is performed in gate structures having source regions in a source-down direction at a second angle. The second photoresist is removed. Replacement gate electrodes are formed in each of the gate structures.
    Type: Application
    Filed: May 10, 2012
    Publication date: August 30, 2012
    Applicant: International Business Machines Corporation
    Inventors: Hasan M. Nayfeh, Andres Bryant, Arvind Kumar, Nivo Rovedo, Robert R. Robison
  • Publication number: 20120211854
    Abstract: Pixel sensor cells, methods of fabricating pixel sensor cells, and design structures for a pixel sensor cell. The pixel sensor cell has a gate structure that includes a gate dielectric and a gate electrode on the gate dielectric. The gate electrode includes a layer with first and second sections that have a juxtaposed relationship on the gate dielectric. The second section of the gate electrode is comprised of a conductor, such as doped polysilicon or a metal. The first section of the gate electrode is comprised of a metal having a higher work function than the conductor comprising the second section so that the gate structure has an asymmetric threshold voltage.
    Type: Application
    Filed: February 17, 2011
    Publication date: August 23, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Andres Bryant, William F. Clark, JR., John J. Ellis-Monaghan, Edward J. Nowak
  • Publication number: 20120208329
    Abstract: Disclosed is an integrated circuit device having series-connected planar or non-planar field effect transistors (FETs) with integrated voltage equalization and a method of forming the device. The series-connected FETs comprise gates positioned along a semiconductor body to define the channel regions for the series-connected FETs. Source/drain regions are located within the semiconductor body on opposing sides of the channel regions such that each portion of the semiconductor body between adjacent gates comprises one source/drain region for one field effect transistor abutting another source/drain region for another field effect transistor. Integrated voltage equalization is achieved through a conformal conductive layer having a desired resistance and positioned over the series-connected FETs such that it is electrically isolated from the gates, but in contact with the source/drain regions within the semiconductor body.
    Type: Application
    Filed: April 25, 2012
    Publication date: August 16, 2012
    Applicant: International Business Machines Corporation
    Inventors: Andres Bryant, Edward J. Nowak
  • Patent number: 8242561
    Abstract: A field effect device includes a channel region disposed on a silicon on insulator (SOI) layer, a gate portion disposed on the channel region, a source region disposed on the SOI layer and connected to the channel region having a horizontal surface and a vertical surface, the vertical surface arranged perpendicular to a linear axis of the device, a silicide portion that includes the horizontal surface and vertical surface of the source region, a contact including a metallic material in contact with the horizontal surface and vertical surface of the source region, and a drain region connected to the channel region disposed on the SOI layer.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: August 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak, Jed H. Rankin
  • Patent number: 8237471
    Abstract: An NAND circuit has a stacked structure having at least one symmetric NFET at a bottom of the stack. More particularly, the circuit has a stacked structure which includes an asymmetric FET and a symmetric FET. The symmetric FET is placed at the bottom of the stacked structure closer to ground than the asymmetric FET.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: August 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak
  • Publication number: 20120193712
    Abstract: A semiconductor device which includes fins of a semiconductor material formed on a semiconductor substrate and then a gate electrode formed over and in contact with the fins. An insulator layer is deposited over the gate electrode and the fins. A trench opening is then etched in the insulator layer. The trench opening exposes the fins and extends between the fins. The fins are then silicided through the trench opening. Then, the trench opening is filled with a metal in contact with the silicided fins to form a local interconnect connecting the fins.
    Type: Application
    Filed: January 27, 2011
    Publication date: August 2, 2012
    Applicant: International Business Machines Corporation
    Inventors: Andres Bryant, Huiming Bu, Dechao Guo, Wilfried E. Haensch, Chun-Chen Yeh
  • Patent number: 8232151
    Abstract: A plurality of gate structures are formed on a substrate. Each of the gate structures includes a first gate electrode and source and drain regions. The first gate electrode is removed from each of the gate structures. A first photoresist is applied to block gate structures having source regions in a source-down direction. A first halo implantation is performed in gate structures having source regions in a source-up direction at a first angle. The first photoresist is removed. A second photoresist is applied to block gate structures having source regions in a source-up direction. A second halo implantation is performed in gate structures having source regions in a source-down direction at a second angle. The second photoresist is removed. Replacement gate electrodes are formed in each of the gate structures.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Hasan M. Nayfeh, Andres Bryant, Arvind Kumar, Nivo Rovedo, Robert R. Robison
  • Patent number: 8232627
    Abstract: Disclosed is an integrated circuit device having series-connected planar or non-planar field effect transistors (FETs) with integrated voltage equalization and a method of forming the device. The series-connected FETs comprise gates positioned along a semiconductor body to define the channel regions for the series-connected FETs. Source/drain regions are located within the semiconductor body on opposing sides of the channel regions such that each portion of the semiconductor body between adjacent gates comprises one source/drain region for one field effect transistor abutting another source/drain region for another field effect transistor. Integrated voltage equalization is achieved through a conformal conductive layer having a desired resistance and positioned over the series-connected FETs such that it is electrically isolated from the gates, but in contact with the source/drain regions within the semiconductor body.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Andres Bryant, Edward J. Nowak
  • Publication number: 20120190156
    Abstract: A recessed gate FET device includes a substrate having an upper and lower portions, the lower portion having a reduced concentration of dopant material than the upper portion; a trench-type gate electrode defining a surrounding channel region and having a gate dielectric material layer lining and including a conductive material having a top surface recessed to reduce overlap capacitance with respect to the source and drain diffusion regions formed at an upper substrate surface at either side of the gate electrode. There is optionally formed halo implants at either side of and abutting the gate electrode, each halo implants extending below the source and drain diffusions into the channel region. Additionally, highly doped source and drain extension regions are formed that provide a low resistance path from the source and drain diffusion regions to the channel region.
    Type: Application
    Filed: February 1, 2012
    Publication date: July 26, 2012
    Applicant: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak
  • Publication number: 20120188008
    Abstract: A circuit has a stacked structure having at least one symmetric FET at a bottom of the stack. More particularly, the circuit has a stacked structure which includes an asymmetric FET and a symmetric FET. The symmetric FET is placed at the bottom of the stacked structure closer to ground than the asymmetric FET.
    Type: Application
    Filed: March 28, 2012
    Publication date: July 26, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. ANDERSON, Andres BRYANT, Edward J. NOWAK
  • Patent number: 8227844
    Abstract: A CMOS active pixel sensor (APS) cell structure includes at least one transfer gate device and method of operation. A first transfer gate device comprises a diodic or split transfer gate conductor structure having a first doped region of first conductivity type material and a second doped region of a second conductivity type material. A photosensing device is formed adjacent the first doped region for collecting charge carriers in response to light incident thereto, and, a diffusion region of a second conductivity type material is formed at or below the substrate surface adjacent the second doped region of the transfer gate device for receiving charges transferred from the photosensing device while preventing spillback of charges to the photosensing device upon timed voltage bias to the diodic or split transfer gate conductor structure.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: July 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Andres Bryant, John J. Ellis-Monaghan
  • Publication number: 20120181588
    Abstract: Pixel sensor cells, methods of fabricating pixel sensor cells, and design structures for a pixel sensor cell. A transistor in the pixel sensor cell has a gate structure that includes a gate dielectric with a thick region and a thin region. A gate electrode of the gate structure is formed on the thick region of the gate dielectric and the thin region of the gate dielectric. The thick region of the gate dielectric and the thin region of the gate dielectric provide the transistor with an asymmetric threshold voltage.
    Type: Application
    Filed: January 13, 2011
    Publication date: July 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Andres Bryant, William F. Clark, JR., John J. Ellis-Monaghan, Edward J. Nowak
  • Patent number: 8217456
    Abstract: Disclosed herein is a field effect transistor (FET), device including a FET, and a method of making the same. In embodiments of the disclosure, a semiconductor-on-insulator (SOI) substrate is provided. The SOI substrate includes a body having a first conductivity type formed in the semiconductor layer of the SOI substrate, the body including a first body region connecting a second body region to a third body region; and a source and a drain, each having a second conductivity type, disposed on opposite sides of the first body region. A first gate electrode having a second work function is disposed above the first body region; and a second gate electrode having a first work function disposed above the second and third body regions. A first gate dielectric layer may be disposed vertically between the first body region and the first gate electrode, and a second gate dielectric layer may be disposed vertically between the second and third body regions and the second gate electrode.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: July 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak
  • Publication number: 20120168873
    Abstract: Transmission gates, methods of fabricating transmission gates, and design structures for a transmission gate. The transmission gate includes an n-channel field effect transistor characterized by terminals that are asymmetrically doped and a p-channel field effect transistor characterized by terminals that are asymmetrically doped.
    Type: Application
    Filed: January 5, 2011
    Publication date: July 5, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak
  • Publication number: 20120168832
    Abstract: Disclosed are embodiments of an asymmetric field effect transistor structure and a method of forming the structure in which both series resistance in the source region (Rs) and gate to drain capacitance (Cgd) are reduced in order to provide optimal performance (i.e., to provide improved drive current with minimal circuit delay). Specifically, different heights of the source and drain regions and/or different distances between the source and drain regions and the gate are tailored to minimize series resistance in the source region (i.e., in order to ensure that series resistance is less than a predetermined resistance value) and in order to simultaneously to minimize gate to drain capacitance (i.e., in order to simultaneously ensure that gate to drain capacitance is less than a predetermined capacitance value).
    Type: Application
    Filed: September 27, 2011
    Publication date: July 5, 2012
    Applicant: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, William F. Clark, JR., Edward J. Nowak
  • Publication number: 20120153431
    Abstract: Disclosed is an integrated circuit having at least one deep trench isolation structure and a deep trench capacitor. A method of forming the integrated circuit incorporates a single etch process to simultaneously form first trench(s) and a second trenches for the deep trench isolation structure(s) and a deep trench capacitor, respectively. Following formation of a buried capacitor plate adjacent to the lower portion of the second trench, the trenches are lined with a conformal insulator layer and filled with a conductive material. Thus, for the deep trench capacitor, the conformal insulator layer functions as the capacitor dielectric and the conductive material as a capacitor plate in addition to the buried capacitor plate. A shallow trench isolation (STI) structure formed in the substrate extending across the top of the first trench(es) encapsulates the conductive material therein, thereby creating the deep trench isolation structure(s).
    Type: Application
    Filed: February 28, 2012
    Publication date: June 21, 2012
    Applicant: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Herbert L. Ho, Edward J. Nowak
  • Publication number: 20120145650
    Abstract: The disclosure relates generally to nano-filters and methods of forming same, and methods of filtration. The nano-filter includes a substrate and at least one nanowire structure located between an inlet and an outlet. The nanowire structure may include a plurality of vertically stacked horizontal nanowires.
    Type: Application
    Filed: December 13, 2010
    Publication date: June 14, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak, Jeffrey W. Sleight
  • Publication number: 20120146146
    Abstract: Disclosed are embodiments of a field effect transistor with a gate-to-body tunnel current region (GTBTCR) and a method. In one embodiment, a gate, having adjacent sections with different conductivity types, traverses the center portion of a semiconductor layer to create, within the center portion, a channel region and a GTBTCR below the adjacent sections having the different conductivity types, respectively. In another embodiment, a semiconductor layer has a center portion with a channel region and a GTBTCR. The GTBTCR comprises: a first implant region adjacent to and doped with a higher concentration of the same first conductivity type dopant as the channel region; a second implant region, having a second conductivity type, adjacent to the first implant region; and an enhanced generation and recombination region between the implant regions. A gate with the second conductivity type traverses the center portion.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 14, 2012
    Applicant: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Jiale Liang, Edward J. Nowak
  • Patent number: 8198682
    Abstract: A semiconductor device including semiconductor material having a bend and a trench feature formed at the bend, and a gate structure at least partially disposed in the trench feature. A method of fabricating a semiconductor structure including forming a semiconductor material with a trench feature over a layer, forming a gate structure at least partially in the trench feature, and bending the semiconductor material such that stress is induced in the semiconductor material in an inversion channel region of the gate structure.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: June 12, 2012
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak