Patents by Inventor Andrew Arthur Ketterson

Andrew Arthur Ketterson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11929300
    Abstract: An integrated circuit (IC) package with an embedded heat spreader in a redistribution layer (RDL) is provided. IC packaging facilitates a high density package for ICs, including monolithic microwave integrated circuits (MMICs). However, IC packaging may result in reduced heat removal from an IC, decreasing radio frequency (RF) circuit performance. In an exemplary aspect, an IC package is provided which incorporates an embedded heat spreader within a dielectric layer of an RDL coupled to an IC die. The embedded heat spreader provides efficient heat transfer, robust RF performance, and operation through millimeter wave (mmW) frequencies, all in a miniature low-cost, low-profile surface mountable (SM) package.
    Type: Grant
    Filed: February 23, 2023
    Date of Patent: March 12, 2024
    Assignee: Qorvo US, Inc.
    Inventors: Kevin J. Anderson, Andrew Arthur Ketterson, Tarak A. Railkar, Deep C. Dumka, Christo Bojkov
  • Patent number: 11908808
    Abstract: A monolithic microwave integrated circuit (MMIC) with embedded transmission line (ETL) ground shielding is provided. In an exemplary aspect, an ETL MMIC according to this disclosure includes a MMIC substrate having an active side, an ETL dielectric layer covering the active side, and a topside ground plane over the ETL dielectric layer. The active side includes one or more transmission lines or other components which may undesirably couple to metal signal lines (e.g., package metal interconnects) in an external circuit assembly. The topside ground plane in the ETL MMIC provides shielding to reduce such electromagnetic coupling. The topside ground plane can also facilitate improved thermal paths for heat dissipation, such as through a redistribution layer (RDL) to a next higher assembly (NHA) and/or through a backside ground plane of the MMIC substrate.
    Type: Grant
    Filed: January 17, 2023
    Date of Patent: February 20, 2024
    Assignee: Qorvo US, Inc.
    Inventor: Andrew Arthur Ketterson
  • Patent number: 11791312
    Abstract: Monolithic microwave integrated circuits (MMICs) with backside interconnects for fanout-style packaging are disclosed. Fanout-style packaging, such as fanout wafer (FOWLP) or fanout panel-level packaging (FOPLP), facilitates a high density package for MMICs. However, the fanout-style packaging may produce undesired electromagnetic (EM) coupling between a MMIC die and metal features in a redistribution layer (RDL) of the FOW/PLP package and/or a next higher assembly (NHA). In an exemplary aspect, a circuit package according to this disclosure includes the MMIC die and an RDL. The MMIC includes a chip side with components which may undesirably couple to metal signal lines (e.g., package metal interconnects) in the RDL. The chip side of the MMIC is oriented away from the RDL to reduce such EM coupling.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: October 17, 2023
    Assignee: Qorvo US, Inc.
    Inventors: Andrew Arthur Ketterson, Christo Pavel Bojkov
  • Publication number: 20230253340
    Abstract: A monolithic microwave integrated circuit (MMIC) with embedded transmission line (ETL) ground shielding is provided. In an exemplary aspect, an ETL MMIC according to this disclosure includes a MMIC substrate having an active side, an ETL dielectric layer covering the active side, and a topside ground plane over the ETL dielectric layer. The active side includes one or more transmission lines or other components which may undesirably couple to metal signal lines (e.g., package metal interconnects) in an external circuit assembly. The topside ground plane in the ETL MMIC provides shielding to reduce such electromagnetic coupling. The topside ground plane can also facilitate improved thermal paths for heat dissipation, such as through a redistribution layer (RDL) to a next higher assembly (NHA) and/or through a backside ground plane of the MMIC substrate.
    Type: Application
    Filed: January 17, 2023
    Publication date: August 10, 2023
    Inventor: Andrew Arthur Ketterson
  • Publication number: 20230207415
    Abstract: An integrated circuit (IC) package with an embedded heat spreader in a redistribution layer (RDL) is provided. IC packaging facilitates a high density package for ICs, including monolithic microwave integrated circuits (MMICs). However, IC packaging may result in reduced heat removal from an IC, decreasing radio frequency (RF) circuit performance. In an exemplary aspect, an IC package is provided which incorporates an embedded heat spreader within a dielectric layer of an RDL coupled to an IC die. The embedded heat spreader provides efficient heat transfer, robust RF performance, and operation through millimeter wave (mmW) frequencies, all in a miniature low-cost, low-profile surface mountable (SM) package.
    Type: Application
    Filed: February 23, 2023
    Publication date: June 29, 2023
    Inventors: Kevin J. Anderson, Andrew Arthur Ketterson, Tarak A. Railkar, Deep C. Dumka, Christo Bojkov
  • Patent number: 11626340
    Abstract: An integrated circuit (IC) package with an embedded heat spreader in a redistribution layer (RDL) is provided. IC packaging facilitates a high density package for ICs, including monolithic microwave integrated circuits (MMICs). However, IC packaging may result in reduced heat removal from an IC, decreasing radio frequency (RF) circuit performance. In an exemplary aspect, an IC package is provided which incorporates an embedded heat spreader within a dielectric layer of an RDL coupled to an IC die. The embedded heat spreader provides efficient heat transfer, robust RF performance, and operation through millimeter wave (mmW) frequencies, all in a miniature low-cost, low-profile surface mountable (SM) package.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: April 11, 2023
    Assignee: Qorvo US, Inc.
    Inventors: Kevin J. Anderson, Andrew Arthur Ketterson, Tarak A. Railkar, Deep C. Dumka, Christo Bojkov
  • Patent number: 11557545
    Abstract: A monolithic microwave integrated circuit (MMIC) with embedded transmission line (ETL) ground shielding is provided. In an exemplary aspect, an ETL MMIC according to this disclosure includes a MMIC substrate having an active side, an ETL dielectric layer covering the active side, and a topside ground plane over the ETL dielectric layer. The active side includes one or more transmission lines or other components which may undesirably couple to metal signal lines (e.g., package metal interconnects) in an external circuit assembly. The topside ground plane in the ETL MMIC provides shielding to reduce such electromagnetic coupling. The topside ground plane can also facilitate improved thermal paths for heat dissipation, such as through a redistribution layer (RDL) to a next higher assembly (NHA) and/or through a backside ground plane of the MMIC substrate.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: January 17, 2023
    Assignee: Qorvo US, Inc.
    Inventor: Andrew Arthur Ketterson
  • Patent number: 11251292
    Abstract: A high electron mobility transistor is disclosed. The high electron mobility transistor has a gallium nitride layer with a plurality of two-dimensional electron gas channels, wherein the gallium nitride layer is disposed over a substrate. A gate contact has a gate bus disposed over the gallium nitride layer. The gate bus includes a plurality of gate feet extending from the gate bus into the gallium nitride layer. Each gate foot of the plurality of gate feet has a trapezoid-shaped cross-section with a longer base and a shorter base in parallel with a longitudinal axis of the gate bus. A source contact is disposed over the gallium nitride layer, and a drain contact is disposed over the gallium nitride layer, wherein the source contact and the drain contact are spaced apart from the gate contact and each other.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: February 15, 2022
    Assignee: QORVO US, INC.
    Inventors: Yongjie Cui, Yu Cao, Andrew Arthur Ketterson
  • Patent number: 11152677
    Abstract: Integration of self-biased magnetic circulators with microwave devices is disclosed herein. In microwave and other high-frequency radio frequency (RF) applications, a magnetic circulator can be implemented with a smaller permanent magnet. Aspects disclosed herein include a process flow for producing a self-biased circulator in an integrated circuit chip. In this regard, a magnetic circulator junction can be fabricated on an active layer of a semiconductor wafer. A deep pocket or cavity is formed in an insulating substrate under the active layer. This cavity is then filled with a ferromagnetic material such that the circulator junction is self-biased within the integrated circuit chip, eliminating the need for an external magnet. The self-biased circulator provides high isolation between ports in a smaller integrated circuit.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: October 19, 2021
    Assignee: Qorvo US, Inc.
    Inventors: Yongjie Cui, Xing Gu, Andrew Arthur Ketterson, Cathy Lee, Xing Chen
  • Publication number: 20210183722
    Abstract: An integrated circuit (IC) package with an embedded heat spreader in a redistribution layer (RDL) is provided. IC packaging facilitates a high density package for ICs, including monolithic microwave integrated circuits (MMICs). However, IC packaging may result in reduced heat removal from an IC, decreasing radio frequency (RF) circuit performance. In an exemplary aspect, an IC package is provided which incorporates an embedded heat spreader within a dielectric layer of an RDL coupled to an IC die. The embedded heat spreader provides efficient heat transfer, robust RF performance, and operation through millimeter wave (mmW) frequencies, all in a miniature low-cost, low-profile surface mountable (SM) package.
    Type: Application
    Filed: December 12, 2019
    Publication date: June 17, 2021
    Inventors: Kevin J. Anderson, Andrew Arthur Ketterson, Tarak A. Railkar, Deep C. Dumka
  • Patent number: 10854810
    Abstract: A passive magnetic device (PMD) has a base electrode, a multi-port signal structure (MPSS), and a substrate therebetween. The MPSS has a central plate residing in a second plane and at least two port tabs spaced apart from one another and extending from the central plate. The substrate has a central portion that defines a mesh structure between the base electrode and the central plate of the multi-port signal structure. A plurality of magnetic pillars are provided within the mesh structure, wherein each of the plurality of the magnetic pillars are spaced apart from one another and surrounded by a corresponding portion of the mesh structure. The PMD may provide a magnetically self-biased device that may be used as a radio frequency (RF) circulator, an RF isolator, and the like.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: December 1, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Andrew Arthur Ketterson, Xing Gu, Yongjie Cui, Xing Chen
  • Publication number: 20200373419
    Abstract: A high electron mobility transistor is disclosed. The high electron mobility transistor has a gallium nitride layer with a plurality of two-dimensional electron gas channels, wherein the gallium nitride layer is disposed over a substrate. A gate contact has a gate bus disposed over the gallium nitride layer. The gate bus includes a plurality of gate feet extending from the gate bus into the gallium nitride layer. Each gate foot of the plurality of gate feet has a trapezoid-shaped cross-section with a longer base and a shorter base in parallel with a longitudinal axis of the gate bus. A source contact is disposed over the gallium nitride layer, and a drain contact is disposed over the gallium nitride layer, wherein the source contact and the drain contact are spaced apart from the gate contact and each other.
    Type: Application
    Filed: May 20, 2020
    Publication date: November 26, 2020
    Inventors: Yongjie Cui, Yu Cao, Andrew Arthur Ketterson
  • Publication number: 20200176393
    Abstract: A monolithic microwave integrated circuit (MMIC) with embedded transmission line (ETL) ground shielding is provided. In an exemplary aspect, an ETL MMIC according to this disclosure includes a MMIC substrate having an active side, an ETL dielectric layer covering the active side, and a topside ground plane over the ETL dielectric layer. The active side includes one or more transmission lines or other components which may undesirably couple to metal signal lines (e.g., package metal interconnects) in an external circuit assembly. The topside ground plane in the ETL MMIC provides shielding to reduce such electromagnetic coupling. The topside ground plane can also facilitate improved thermal paths for heat dissipation, such as through a redistribution layer (RDL) to a next higher assembly (NHA) and/or through a backside ground plane of the MMIC substrate.
    Type: Application
    Filed: November 20, 2019
    Publication date: June 4, 2020
    Inventor: Andrew Arthur Ketterson
  • Publication number: 20200176416
    Abstract: Monolithic microwave integrated circuits (MMICs) with backside interconnects for fanout-style packaging are disclosed. Fanout-style packaging, such as fanout wafer (FOWLP) or fanout panel-level packaging (FOPLP), facilitates a high density package for MMICs. However, the fanout-style packaging may produce undesired electromagnetic (EM) coupling between a MMIC die and metal features in a redistribution layer (RDL) of the FOW/PLP package and/or a next higher assembly (NHA). In an exemplary aspect, a circuit package according to this disclosure includes the MMIC die and an RDL. The MMIC includes a chip side with components which may undesirably couple to metal signal lines (e.g., package metal interconnects) in the RDL. The chip side of the MMIC is oriented away from the RDL to reduce such EM coupling.
    Type: Application
    Filed: September 3, 2019
    Publication date: June 4, 2020
    Inventors: Andrew Arthur Ketterson, Christo Pavel Bojkov
  • Publication number: 20200153071
    Abstract: Integration of self-biased magnetic circulators with microwave devices is disclosed herein. In microwave and other high-frequency radio frequency (RF) applications, a magnetic circulator can be implemented with a smaller permanent magnet. Aspects disclosed herein include a process flow for producing a self-biased circulator in an integrated circuit chip. In this regard, a magnetic circulator junction can be fabricated on an active layer of a semiconductor wafer. A deep pocket or cavity is formed in an insulating substrate under the active layer. This cavity is then filled with a ferromagnetic material such that the circulator junction is self-biased within the integrated circuit chip, eliminating the need for an external magnet. The self-biased circulator provides high isolation between ports in a smaller integrated circuit.
    Type: Application
    Filed: June 3, 2019
    Publication date: May 14, 2020
    Inventors: Yongjie Cui, Xing Gu, Andrew Arthur Ketterson, Cathy Lee, Xing Chen
  • Publication number: 20200152859
    Abstract: A passive magnetic device (PMD) has a base electrode, a multi-port signal structure (MPSS), and a substrate therebetween. The MPSS has a central plate residing in a second plane and at least two port tabs spaced apart from one another and extending from the central plate. The substrate has a central portion that defines a mesh structure between the base electrode and the central plate of the multi-port signal structure. A plurality of magnetic pillars are provided within the mesh structure, wherein each of the plurality of the magnetic pillars are spaced apart from one another and surrounded by a corresponding portion of the mesh structure. The PMD may provide a magnetically self-biased device that may be used as a radio frequency (RF) circulator, an RF isolator, and the like.
    Type: Application
    Filed: January 15, 2020
    Publication date: May 14, 2020
    Inventors: Andrew Arthur Ketterson, Xing Gu, Yongjie Cui, Xing Chen
  • Patent number: 10601398
    Abstract: A BAW device includes a substrate, a first reflector, and at least two BAW transducers. The first reflector resides over the substrate and has a plurality of reflector layers. A first BAW transducer resides over a first section of the first reflector, has a first series resonance frequency, and has a first piezoelectric layer of a first thickness between a first top electrode and a first bottom electrode. The second BAW transducer resides over a second section of the first reflector, has a second series resonance frequency that is different than the first series resonance frequency, and has a second piezoelectric layer of a second thickness, which is different than the first thickness, between a second top electrode and a second bottom electrode.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: March 24, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Dana Jay Sturzebecher, Larry Charles Witkowski, Arthur Donald Ballato, Andrew Arthur Ketterson
  • Patent number: 10553782
    Abstract: A passive magnetic device (PMD) has a base electrode, a multi-port signal structure (MPSS), and a substrate therebetween. The MPSS has a central plate residing in a second plane and at least two port tabs spaced apart from one another and extending from the central plate. The substrate has a central portion that defines a mesh structure between the base electrode and the central plate of the multi-port signal structure. A plurality of magnetic pillars are provided within the mesh structure, wherein each of the plurality of the magnetic pillars are spaced apart from one another and surrounded by a corresponding portion of the mesh structure. The PMD may provide a magnetically self-biased device that may be used as a radio frequency (RF) circulator, an RF isolator, and the like.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: February 4, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Andrew Arthur Ketterson, Xing Gu, Yongjie Cui, Xing Chen
  • Publication number: 20190319602
    Abstract: A BAW device includes a substrate, a first reflector, and at least two BAW transducers. The first reflector resides over the substrate and has a plurality of reflector layers. A first BAW transducer resides over a first section of the first reflector, has a first series resonance frequency, and has a first piezoelectric layer of a first thickness between a first top electrode and a first bottom electrode. The second BAW transducer resides over a second section of the first reflector, has a second series resonance frequency that is different than the first series resonance frequency, and has a second piezoelectric layer of a second thickness, which is different than the first thickness, between a second top electrode and a second bottom electrode.
    Type: Application
    Filed: April 13, 2018
    Publication date: October 17, 2019
    Inventors: Dana Jay Sturzebecher, Larry Charles Witkowski, Arthur Donald Ballato, Andrew Arthur Ketterson
  • Publication number: 20180240963
    Abstract: A passive magnetic device (PMD) has a base electrode, a multi-port signal structure (MPSS), and a substrate therebetween. The MPSS has a central plate residing in a second plane and at least two port tabs spaced apart from one another and extending from the central plate. The substrate has a central portion that defines a mesh structure between the base electrode and the central plate of the multi-port signal structure. A plurality of magnetic pillars are provided within the mesh structure, wherein each of the plurality of the magnetic pillars are spaced apart from one another and surrounded by a corresponding portion of the mesh structure. The PMD may provide a magnetically self-biased device that may be used as a radio frequency (RF) circulator, an RF isolator, and the like.
    Type: Application
    Filed: February 21, 2018
    Publication date: August 23, 2018
    Inventors: Andrew Arthur Ketterson, Xing Gu, Yongjie Cui, Xing Chen